ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:210.23KB ,
资源ID:10290593      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-10290593.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(电气传动自动控制系统第3章02.docx)为本站会员(b****1)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

电气传动自动控制系统第3章02.docx

1、电气传动自动控制系统第3章023.2 鼠笼式异步电动机的起动方法电机的运行过程包括起动、稳定运行、制动等过程。电机的起动过程是指电机投入电网后,从静止状态加速到稳定运行转速的过程。对起动过程的一般要求:电动机能发出足够大的起动转矩以克服负载转矩,保证系统在规定时间内正常起动;起动电流限定在一定范围内,不会引起电机过热,供电电源电压跌落也在允许范围内。起动设备结构简单、操作方便、能量损耗小。生产机械若对起动过程有特殊要求,可按实际情况确定。三相鼠笼式异步电动机有直接起动和降压起动两大类起动方法。3.2.1 直接起动直接起动,又称全压起动,即异步电动机不采取任何措施,直接通过闸刀开关或接触器把全部

2、电源电压加到异步电动机的定子绕组上的起动方法。直接起动是一种最简单的起动方法。其优点显而易见,即起动设备简单、操作方便。下面,分析异步电动机直接起动的特点。特点:异步电动机直接起动时,起动电流大;原因:在刚起动的瞬间,转子不动,n=0,转差率最大,s=1,转子感应电势E2=sE20最大,使转子电流最大,定子电流也最大。一般,起动电流倍数ist=47,即起动电流为额定电流的47倍,或更大。特点:异步电动机直接起动时,起动转矩Tst小。原因:在刚起动的瞬间,转差率最大,s=1,转子电流频率f2=sf1=f1最大,转子电抗x2远大于转子电阻r2,使转子功率因数很低。同时,由于起动电流Ist大,使定子

3、压降很大,定子感应电势E1比电源电压U1小很多,则与E1成正比的也小很多。由物理表达式,即电磁转矩公式T=CTI2cos2,虽然Ist很大,但、cos2均很低,使得Tst很小。由以上直接起动的特点可知,其与起动过程的要求是背道而驰的,会对电网、电机本身以及整个系统均产生不利影响。对电网而言,起动电流大,线路压降则增大,将引起电网电压的波动,从而影响电网上其他用电设备的正常工作。对电机本身而言,在频繁起动的条件下,过大的起动电流会使电机发热,影响电机的寿命。对整个系统而言,由于起动转矩小,当负载较重时,可能起动不了;即使负载较轻,也会加长起动时间,降低系统的生产效率。因此,直接起动的特点实际就是

4、它的缺点。直接起动特点总结如下:优点:起动设备简单、操作方便缺点:起动电流大,对电网冲击很大,频繁起动时引起电机发热,影响电机寿命;起动转矩小,负载较重时可能不能起动,或能起动,而起动时间较长,降低了生产效率。应用场合:对起动过程要求不高的场合,可以考虑直接起动。条件是对电网的冲击在允许范围内。具体而言,直接起动的起动电流引起的电压降不能超过额定电压的10%15%。一般按经验公式(3-36)判定。 (3-36)为改善异步电动机的起动性能,必须从两方面入手:一是减小起动电流;二是提高起动转矩。同时,还要按照生产机械的不同要求,采取合理的起动方式。以下介绍四种降压起动方法。3.2.2 定子串接对称

5、电阻起动起动时,把对称电阻接入定子电路,电机的转速接近稳定转速时,将起动电阻切掉,把电源电压直接加到电机上,起动过程结束,电机进入正常运行。这种起动方式实质上是降压起动,因为起动电流在电阻上引起电压降,使实际加在电机上的电压降低了。(1)异步电动机定子串接对称电阻后的机械特性的变化特点如图3-8所示,n0不变,Tmax、Tst及sm与均减小了,从而使异步电动机的机械特性的斜率加大,过载能力降低。(2)与直接起动相比,其起动电流、起动转矩的变化情况异步电动机直接全压起动和定子串接对称电阻起动时的等值电路如图3-11所示(其中rsc=r1+r2)。由于起动时(s=1),等值电路中励磁支路的阻抗比转

6、子电路大很多,可认为励磁支路电流近似为0,是开路状态。 (a)直接起动 (b)定子串接电阻起动图3-11 异步电动机起动时的等值电路设异步电动机直接全压起动时,起动电流为Ist,定子串接对称电阻起动时的起动电流为Ist。令= Ist / Ist (1),由图3-11所示的等值电路可知,则U1/U1= Ist / Ist=。(UIst)又由于异步电动机的参数表达式可知TU2,则Tst / Tst=2,即Tst=Tst / 2。也就是说,当起动电流由于串接电阻被降低为直接起动的1/,达到了降低起动电流的目的,但同时带来一个负面的效应,起动转矩降低为直接起动的1/2,因此,定子串电子起动仅适用于空载

7、和轻载场合。(3)起动电阻Rad的计算鼠笼式异步电动机定子串电阻起动的特点总结如下:优点:起动平稳、运行可靠、设备简单缺点:起动转矩严重减小,能量损耗大应用场合:轻载起动,适用于低压电动机3.2.3 定子串接对称电抗起动起动时,把对称电抗接入定子电路,电机的转速接近稳定转速时,将起动电抗切掉,把电源电压直接加到电机上,起动过程结束,电机进入正常运行。这种起动方式实质上也是降压起动,因为起动电流在电抗上引起电压降,使实际加在电机上的电压降低了。(1)异步电动机定子串接对称电抗后的机械特性的特点同前。(2)与直接起动相比,其起动电流、起动转矩的变化情况同前。(3)起动电抗xad的计算优点:起动平稳

8、、运行可靠、设备简单缺点:起动转矩严重减小应用场合:轻载起动,适用于高压电动机3.2.4 自耦变压器降压起动起动时,定子绕组经自耦变压器接到电源上,电机降压起动。当转速接近稳定转速时,将自耦变压器切除,把电源电压直接加到电机上,起动过程结束,电机进入正常运行。自耦变压器的原理图如图3-12所示。图3-12 自耦变压器的原理图由变压器原理可知,设异步电动机直接全压起动时,加在定子上的电压为U1,定子绕组中的起动电流为Ist;而用自耦变压器降压起动时,加在定子上的电压为Ux,定子绕组中的起动电流为Ix。则有即上式表明,用自耦变压器降压起动时,异步电动机定子绕组中的起动电流Ix为直接全压起动时定子绕

9、组中的起动电流Ist的1/。用自耦变压器降压起动时,流过电网的起动电流I1,则上式表明,用自耦变压器降压起动时,电网侧的起动电流I1为直接全压起动时电网侧起动电流Ist的1/2。设异步电动机直接全压起动时,加在定子上的电压为U1,起动转矩为Tst;用自耦变压器降压起动时,加在定子上的电压为Ux,起动转矩为Tst。则由于TU2,有即上式表明,异步电动机用自耦变压器降压起动时,起动转矩Tst为直接全压起动时起动转矩Tst的1/2。为满足不同负载的要求,自耦变压器的副边绕组一般有三个抽头,分别为电源电压的0.6、0.65和0.8倍。国产的起动用自耦变压器,亦称为自耦降压起动器。优点:对电网冲击较小,

10、电压抽头可供不同负载起动时选择。缺点:体积大、重量重、成本高、需维护检修。应用场合:用于电动机容量较大,电网容量较小的场合很有利。3.2.5 星形三角形(Y)降压起动起动时把异步电动机三相定子绕组接成星形(Y),当转速接近稳定时在换接为三角形(),从而达到起动时降压的目的。 图3-13 异步电动机起动时Y变换设电网电压为U1,异步电动机的短路阻抗为zsc,则定子绕组星形联结时的线电流(电网电流)为当定子绕组三角形联结时的线电流(电网电流)为则 上式表明,对电网而言,星形联接时的起动电流是三角形联接时起动电流的1/3。即限制了起动电流。又由于TU2,星形联接时的相电压是三角形联接时的相电压的1/

11、,即,则星形联接时的起动转矩是三角形联接时起动转矩的1/3,即Tst=Tst / 3。Y降压起动的特点总结如下:优点:起动设备简单,体积小,重量轻,成本低,运行可靠,检修方便。缺点:起动降压系数一定(),不能象自耦变压器那样可按不同负载选择不同抽头。应用场合:只能用在异步电动机正常运行时定子绕组接成三角形的电动机。而且要求异步电动机三相定子绕组有6个出线端,因此只限于低压电动机的场合,高压实现困难。同时,由于起动转矩的降低系数较大(为3),因而只适用于空载或轻载起动。表3-3 鼠笼式异步电动机的起动方法对比(降压系数)起动方法直接起动定子串电抗/阻降压起动自耦变压器降压起动Y降压起动起动电压U

12、U/U/U/sqrt(3)起动电流IstIst/Ist/2Ist/3起动转矩TstTst/2Tst/2Tst/3起动设备最简单一般较复杂,有三种抽头可选简单,只用于接380V电机例3-3 一台鼠笼式三相异步电动机的铭牌数据为:PN=90kW,定子接法,UN=380V,IN=167A,nN=2970r/min,cosN=0.89,起动电流倍数ist=7,起动转矩倍数st=2,过载能力m=2.2。供电变压器要求起动电流500A,负载起动转矩为210Nm。请经过计算选择一个合适的起动方法,写出必要的计算数据。若采用自耦变压器起动,抽头有60%、65%、80%三种,需要算出用哪个抽头?鼠笼式异步电动机

13、的起动方法的选择原则:直接起动起动定子串接对称电抗/阻起动自耦变压器降压起动。原因:直接起动最简单,因而为首选,条件是电网能承受直流起动电流的冲击。若不能承受,则选择起动。因为其设备简单、成本低、体积小、重量轻、运行可靠、维护方便。但其降压系数一定,不一定满足要求。若不行,则选择定子串接对称电抗/电阻起动。因其起动转矩减小严重,能耗较大,故放在起动之后。若上述方法都不行,则选择自耦变压器降压起动。因其有不同抽头,适用范围较宽。尽管从理论上讲,这种起动方法是最好的,但其成本高、重量重、体积大、需维护检修,因而放在最后选择。解:直接起动时的起动电流为Ist=istIN=7167=1169AIst远

14、大于500A,所以不能采用直接起动的方法。电动机的额定转矩为Nm直接起动时的起动转矩为Tst=stTN=1.1289.39=578.78Nm正常起动要求的起动转矩为Tst1=1.1TL=1.1210=231Nm(1)Y起动因为该电机正常工作为接法,所以具备Y起动的基本条件。下面校验起动电流与起动转矩是否满足要求。起动电流为A500A 起动转矩为Nm231Nm 虽然Ist500A,但是TstTst1=231Nm,不符合要求,不能采用Y起动。(2)定子串接对称电阻(或电抗)起动若定子串接对称电阻(或电抗)后,起动电流限定为500A,即令Ist=500A,则起动转矩为Nm231Nm 起动转矩TstT

15、st1=231Nm,满足不了要求,不能采用定子串接对称电阻(或电抗)起动。(3)自耦变压器降压起动电动机PN=90kW,可选择QJ3-100型自耦降压起动器,它由3种抽头:0.6,0.65,0.8。首先校验0.6抽头是否合适,起动电流为A500A 起动转矩为Nm231Nm 起动转矩满足不了要求,电压需上调。再校验0.65抽头是否合适,起动电流为A231Nm 合适。若采用0.8抽头,则起动电流为A231Nm 起动电流不能满足要求。综上,只有采用自耦变压器0.65抽头降压起动。3.2.6 改善起动性能的鼠笼式异步电动机鼠笼式异步电动机的起动性能较差。直接起动时起动电流大,起动转矩小。采用降压起动达

16、到了减小起动电流的目的,但同时也降低了起动转矩。因此,提出以下三种特殊设计的改善起动性能鼠笼式异步电动机。1. 高转差率(滑率)(High slip)鼠笼式异步电动机鼠笼式异步电动机直接起动时起动电流大,起动转矩小。采用降压起动达到了减小起动电流的目的,但同时也降低了起动转矩。如何解决这个矛盾?从绕线式异步电动机转子电路串接电阻起动得到启发,因为它既减小了起动电流,又增大了起动转矩。尽管鼠笼式异步电动机由于其结构的限制无法在转子电路串入电阻,但能否设法增加其转子电阻?这是能够做到的。提高鼠笼式异步电动机转子电阻的措施是:转子导条采用电阻率较高的材料,同时导条的截面积也较小。因其转子电阻大,所以

17、转差率比一般鼠笼式异步电动机的要高,故称为高转差率鼠笼式异步电动机。国产鼠笼式异步电动机一般称为高滑率鼠笼异步电动机。其机械特性如图3-14所示,显然,高转差率鼠笼式异步电动机的起动转矩比普通鼠笼式异步电动机的起动转矩要大。图3-14 改善起动性能鼠笼式异步电动机的机械特性高转差率鼠笼式异步电动机由于转子电阻大,减小了起动电流,提高了起动转矩,因而改善了起动性能。多用于起重、冶金机械。但由于转子电阻大,也降低了电机的效率。因而,又提出一个想法,能否有这样一种异步电动机,在起动时转子电阻较大,以增大起动转矩并减小起动电流,起动结束后正常运行时转子电阻又会自动减小,从而不会降低电机的效率。这个想法

18、是可以实现的。利用转子电流的集肤效应即可达到这个目的,得到以下两种改善起动性能的鼠笼式异步电动机。2. 深槽(Deep Bar)鼠笼式异步电动机所谓集肤效应,是指导体中的电流向导体表面集中的现象。转子频率愈高,槽高愈大集肤效应愈明显。集肤效应的作用使导体的有效面积变小,有效电阻加大,刚好有利于起动。为了加强这种集肤效应,设计了深槽式鼠笼式异步电动机,其转子槽形深而窄,槽深与槽宽的比在1020以上,转子导条通过电流时,槽的漏磁通如图3-15所示。这种电机在起动时,转子频率较高,集肤效应显著,使转子电阻增大,从而增加了起动转矩并限制了起动电流。起动结束时,转子频率较低,集肤效应基本消失,转子内的电

19、流均匀分布,使转子电阻自动减小。其机械特性如图3-14所示,显然,其起动转矩比普通鼠笼式异步电动机的起动转矩要大,起动性能得到改善。 图3-15 深槽式鼠笼异步电动机的转子槽 图3-16 双鼠笼式异步电动机的转子槽3. 双鼠笼式(Double Squirrel-cage)异步电动机双笼式异步电动机也利用了转子电流的集肤效应。双笼式异步电动机有两套鼠笼。外鼠笼用电阻率较高的材料制成,同时导条的截面积也较小。故电阻也较大;内鼠笼电阻率较低的材料制成,同时导条的截面积也较大。故电阻较小。这种电机在起动时,转子频率较高,集肤效应显著,电流大部分流过上笼。而外笼电阻较大,从而增加了起动转矩并限制了起动电

20、流。起动结束时,转子频率较低,集肤效应基本消失。而由于内笼的电阻较小,电流大部分从此流过,也就是说,电机进入正常运行时,转子电阻自动减小。外笼在起动时起主要作用,又称为起动笼;内笼在运行时起主要作用,又称为运行笼。其机械特性如图3-14所示,显然,其起动转矩比普通鼠笼式异步电动机的起动转矩要大。改善了起动性能。上述三种改善起动性能的鼠笼式异步电动机一般用于起动转矩较高的生产机械。3.3 绕线式异步电动机的起动方法绕线转子异步电动机从结构上创造了改善起动性能的条件,转子电路可以串入电阻或频敏变阻器,因此使绕线式异步电动机的起动性能优于鼠笼式异步电动机,不但起动电流小,而且起动转矩大。一般绕线式异

21、步电动机不得直接起动,有两种起动方法。3.3.1 转子串接对称电阻起动接线图绕线式异步电动机的定子绕组接到三相交流电网上,转子绕组经集电环和电刷接到起动电阻R上。绕线式异步电动机起动时,如果电刷在举起位置,首先应把电刷放下,起动电阻R应调至最大位置。然后定子接通电源,电动机开始转动。随着电动机转速的增加,逐级地减小电阻,直到电阻完全切除。待转速稳定后,将集电环短接,同时举起电刷,这样可减少电刷的磨损,又可减少摩擦损耗。起动过程的机械特性如图3-17所示。 (a)接线图 (b)机械特性图3-17 绕线式异步电动机转子串接电阻的三级起动优点:有较好的起动性能缺点:由于起动分级进行,因而起动控制线路

22、复杂,设备笨重,占地面积较大;由于分级起动,电阻逐级变化,转矩变化较大,对生产机械的冲击较大。应用场合:重载起动绕线转子异步电动机转子电路串接对称电阻起动的计算方法有两种:(1)图解法当最大起动转矩T10.85Tmax时,可利用异步电动机机械特性的线性段来计算起动电阻,机械特性线性段的表达式为T=2Tmax/sms转子电路串入不同的电阻时,Tmax保持不变;同时,对应某同一转矩时即T=const时,有s sm而临界转差率与转子电路总电阻成正比,即sm r2+rst,则s r2+rst上式表明,在转矩不变时,转差率与转子电路的电阻成正比。如图3-17所示,当T=T1时,有在图中,sd=fd,sc

23、=fc=fd+dc则则即同理:其中,转子绕组为Y接法,每相电阻按下式计算:(z2s=r2+jx2s=r2+jsNx2,为额定运行时转子的实际电抗,sNsNx2。)一般,最大起动转矩取为T10.85Tmax;切换转矩取为T2(1.11.2)TL。(2)解析法机械特性线性段的表达式为T=2Tmax/sms当在转差率s不变时,转矩与临界转差率成反比,即T1/sm。而临界转差率与转子电路总电阻成正比,即sm r2+rst,则T 1/(r2+rst)上式表明,转矩与转子电路的电阻成反比。在图3-15中,当s=sb时,对a点和b点,有同理,当s=sc时,对b点和c点,有当s=sd时,对c点和d点,有令,则

24、对m级起动,有则各级转子电路总电阻为R3=r2R2=R3=2r2R1=R2=3r2对m级起动,有R3=r2R2=R3=2r2R1=R2=mr2各级起动电阻为rst1=R1-R2rst2=R2-R3rst3=R3-R4rstm=Rm-r2当T=T1时,有对同一机械特性,Tmax与sm为常数,有Ts则在固有机械特性上有则则例3-4 绕线式异步电动机的铭牌数据如下:PN=240KW,U1N=6000V,I1N=31A,E2N=450V,I2N=342A,nN=735r/min,m=2.3。空载起动T0=0.3TN。试求转子电路串接电阻三级起动的各级起动电阻值。解:用分析法计算。额定转差率转子电阻取T

25、1=0.75Tmax=0.75mTN=0.752.3TN=1.725TN切换转矩可以保证起动。rst2=rst3=0.0323.07=0.097rst1=rst1=0.0973.07=0.2973.3.2 转子串接频敏变阻器起动采用频敏变阻器起动,可以克服转子串接电阻起动的缺点,使异步电动机的起动性能得到改善。频敏变阻器的特点是其阻值随转速的上升而自动减小,使异步电动机能够平滑起动。频敏变阻器实质是只有一次绕组的三相心式变压器,铁心由较厚的钢板或铁板叠压而成,因而涡流损耗(即铁损)很大。因而,频敏变阻器就相当于是一个铁心损耗很大的电抗器,是一种无触点的电磁元件。绕线式异步电动机转子串频敏变阻器

26、的接线图和频敏变阻器某一相的等效电路如图3-18所示,接触器触点KM断开时,电动机转子串接频敏变阻器起动,起动过程结束后,接触器触点KM再闭合,切除频敏变阻器,电动机进入正常运行。 图3-18 频敏变阻器的接线图和等效电路起动初期,转子频率很高,铁损很大,其等效电阻R较大。等值电抗也很大。所以其等效阻抗较大,限制了起动电流。又由于X大大于R,电流基本流过R,这相当于转子电路串入电阻工作,加大了起动转矩,获得较好的起动特性。随着电动机转速的上升,转子频率减小,X值下降,转子电流流过电阻的成分相对减小,即相当于转子中串入的电阻自动地逐渐减小。当电动机转速基本达到稳定转速,即切除频敏变阻器。由其机械特性图3-19可知,适当的参数匹配,可在起动过程中得到基本是恒转矩的机械特性。图3-19 转子串频敏变阻器时的机械特性优点:可平滑起动,对生产机械冲击小;控制简单;频敏变阻器结构简单、制造容易、造价低、运行可靠、维修方便。缺点:与转子电路串电阻起动相比功率因数低,起动转矩小。应用场合:重载起动

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2