ImageVerifierCode 换一换
格式:DOCX , 页数:18 ,大小:98.76KB ,
资源ID:1225561      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-1225561.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(智能城市交通系统外文翻译文献.docx)为本站会员(b****2)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

智能城市交通系统外文翻译文献.docx

1、智能城市交通系统外文翻译文献智能城市交通系统外文翻译文献 (文档含中英文对照即英文原文和中文翻译)A Multiagent System for Optimizing Urban TrafficJohn France and Ali A. GhorbaniFaculty of Computer ScienceUniversity of New BrunswickFredericton, NB, E3B 5A3, CanadaAbstractFor the purposes of managing an urban traffic system, a hierarchical multiagen

2、t system that consists of several locally operating agents each representing an intersection of a traffic system is proposed. Local Traffic Agents (LTAs) are concerned with the optimal performance of their assignedintersection; however, the resulting traffic light patterns may result in the failure

3、of the system when examined at a global level. Therefore, supervision is required and achieved with the use of a Coordinator Traffic Agent (CTA).A CTA provides a means by which the optimal local light pattern can be compared against the global concerns. The pattern can then be slightly modified to a

4、ccommodate the global environment, while maintaining the local concerns of the intersection. Functionality of the proposed system is examined using two traffic scenarios: traffic accident and morning rush hour. For both scenarios, the proposed multiagent system efficiently managed the gradual conges

5、tion of the traffic.1 IntroductionThe 20th century witnessed the worldwide adoption of the automobile as a primary mode of transportation. Coupled with an expanding population, present-day traffic networks are unable to efficiently handle the daily movements of traffic through urban areas. Improveme

6、nts to road networks are often confined by the boundaries of existing structures. Therefore, the primary focus should be to improve traffic flow without changing the layout or structure of the existing roadways. Any solution to traffic problem must handle three basic criteria, including: dynamically

7、 changing traffic patterns, occurrence of unpredictable events, and a non-finite based traffic environment 2. Multiagent systems provide possible solutions to this problem, while meeting all necessary criteria. Agents are expected to work within a real-time, non-terminating environment. As well, age

8、nts can handle dynamically occurring events and may posses several processes to recognize and handle a variety of traffic patterns3, 5.Although several approaches to developing a multiagent traffic system have been studied, each stresses the importance of finding a balance between the desires of the

9、 local optimum against a maintained average at the global level 4. Unfortunately, systems developed to only examine and optimize local events do not guarantee a global balance6. However, local agents are fully capable of determining their own local optimum. Therefore, a more powerful approach involv

10、es the creation of a hierarchical structure in which a higher-level agent monitors the local agents, and is able to modify the local optimum to better suit the global concerns 7. The remainder of this paper is organized as follows. Section 2 examines the problems of urban traffic. The design of a hi

11、erarchical multiagent model is given in Section 3. The experimental results are presented in Section 4. Finally, the conclusions of the present study are summarized in Section 5.2 Urban Traffic CongestionImprovements to urban traffic congestion must focus on reducing internal bottlenecks to the netw

12、ork, rather than replacing the network itself. Of primary concern is the optimization of the traffic lights, which regulate the movement of traffic through the various intersections within the environment.At present, traffic lights may possess sensors to provide basic information relating to their i

13、mmediate environment. This includes road and clock sensors, measuring the presence and density of traffic and providing the time of day to the traffic light.A solution to the urban traffic problem using agents is to simply replace all decision-making objects within the system by a corresponding agen

14、t. Even the most basic system will consist of several agents, leading to the creation of a multiagent environment. In this case, the traffic environment is broken down into its fundamental components, with one agent for each of the traffic lights within the system. To maintain organization and coope

15、ration between the Local Traffic Agents (LTA), a Coordinator Traffic Agent (CTA) exists to monitor global concerns and maintain order.3 Hierarchical Multiagent Model for Urban TrafficTo achieve a balance between the local and global aspects of an urban traffic system, a multiagent system based on a

16、hierarchical architecture is proposed. LTAs and CTAs make up the fundamental levels of the hierarchy, in which the LTAs meet the needs of the specific intersection, and the CTAs determine if the chosen patterns of a LTA are suited to meet any global concerns. A solitary Global Traffic Agent (GTA) ma

17、y exist for networks of sufficient size, and an Information Traffic Agent (ITA) provides a central location for the storage of all shared information within the system. For each agent, the variables necessary to organize and maintain the hierarchy are listed.The development of this system, in which

18、several LTAs work under the guidance of a single CTA, represents the backbone to a hierarchical structure of agents within the system. The CTA provides the bonds between itself and the LTAs of the system, requiring that the CTA store a list of the neighboring intersections for each of the LTAs. Howe

19、ver, the computational capabilities of a single CTA are limited, and a road network of sufficient size may require the use of multiple CTAs to handle all of the LTAs within the system. In this circumstance, the network will be subdivided into regions controlled by a single CTA, with a top-level Glob

20、al Traffic Agent (GTA) linking the CTAs together. The GTA is an optional agent, existing only if the network is sufficiently large that it is required.A LTA interacts at a global level by sending a message containing the calculated optimal local light pattern to its supervising CTA. The CTA will fin

21、d the appropriate neighboring intersections, and then determine what the global optimum for the handled LTA will be. To calculate the global optimum, the CTA will require all information relating to each of the neighboring intersection. The CTA will request the information from the ITA by providing

22、a list of the intersections the CTA is concerned with. Once this information is retrieved, a CTA calculates the global optimum and determines if a variance exists between the local and global traffic light patterns. If a significant difference is found, a balance between the local and global optimum

23、s must be negotiated, and then returned to the LTA.4 ImplementationThe proposed urban traffic multiagent system has been implemented using the JACK Development Environment, utilizing JACK Intelligent AgentsTM. JACK uses the Belief Desire Intention (BDI) model. Under this framework,“the agent pursues

24、 its given goals (desires), adopting appropriate plans (intentions) according to its current set of data (beliefs) about the state of the world.” 1. Agents created under the JACK environment are event-driven, and can respond to internal or external events occurring within the systemThe first phase o

25、f implementing the multiagent system involves the creation of LTAs. Each of these agents are tailored to meet the requirements of its corresponding intersection.For the purposes of this project, the traffic network consists of six intersections. Each intersection consists of two roads crossing over

26、one another. Each approaching road posses two lanes, a left-turning lane, and a straight/rightturning lane.The decision-making capabilities of the LTAs is developed in the second phase. The first round of decisions by a LTA are concerned with finding the local optimum, with no consideration for neig

27、hboring intersections. A basic expert system divides the sensor inputs into a corresponding light pattern. The resulting light pattern consists of an eight-element array, which can be broken down into two elements for each of the North, East, South and West directions.Odd elements of the array (zero

28、 is the first index) specify the duration of the advanced green state for each of the appropriate directions, while even elements indicate the time of the straight/right-turning lanes. This light pattern is always in the same format, and once calculated, stored by the LTA. The values contained withi

29、n the array consist of strings, indicating the duration of the traffic light. The values of the strings are as follows:Red: Red light, lanes remain in a stopped state.Short: Green light, most frequently occurring, 30-seconds in duration for straight directions, 15 seconds for leftturning lanes.Mediu

30、m: Green light, often for above average traffic densities,45-seconds in duration for straight directions, 25 seconds for left-turning lanesShort: Green light, indicating a high traffic density, 60-seconds in duration for straight directions, 35 seconds for left-turning lanes.Once the optimal local t

31、raffic light pattern is calculated,the LTA sends a message event to the CTA. The traffic light pattern is passed to the CTA, allowing the CTA to adjust the LTAs light pattern to better meet any global concerns. Stored within the CTA is a vector of neighbors for each LTA within the system. When a CTA

32、 receives a message event from a LTA, the CTA gathers all information relating to the neighbors of the currently handled LTA from the ITA. The CTA will use this information within its own expert system, comparing the local optimum light pattern against the current densities of the neighboring inters

33、ections. If a significant difference is found between the local optimum and the essence of the global optimum, the traffic light pattern to be implemented is altered to reduce the difference between the two optimums. The new traffic light pattern is returned to the LTA for implementation within the traffic light

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2