ImageVerifierCode 换一换
格式:DOCX , 页数:41 ,大小:61.56KB ,
资源ID:12458892      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-12458892.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(过程装备与控制工程专业英语.docx)为本站会员(b****8)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

过程装备与控制工程专业英语.docx

1、过程装备与控制工程专业英语Reading Material 16 Pressure Vessel CodesHistory of Pressure Vessel Codes in the United States Through the late 1800s and early 1900s, explosions in boilers and pressure vessels were frequent. A firetube boiler explosion on the Mississippi River steamboat Sultana on April 27, 1865, resu

2、lted in the boats sinking within 20 minuted and the death of 1500 soldiers going home after the Civil War. This type of catastrophe continued unabated into the early 1900s. In 1905, a destructive explosion of a firetube boiler in a shoe factory in Brockton, Massachusetts, killed 58 people, injured 1

3、17 others, and did $400000 in property damage. In 1906, another explosion in a shoe factory in Lynn, Massachusetts, resulted in death, injury, and extensive property damage. After this accident, the Massachusetts governor directed the formation of a Board of Boiler Rules. The first set of rules for

4、the design and construction of boilers was approved in Massachusetts on August 30, 1907. This code was three pages long. In 1911, Colonel E. D. Meier, the president of the American Society of Mechanical Engineers, established a committee to write a set of rules for the design and construction of boi

5、lers and pressure vessels. On February 13, 1915, the first ASMEBoiler Code was issued. It was entitled Boiler Construction Code, 1914 Edition. This was the beginning of the various sections of the ASME Boiler and Pressure Vessel Code, which ultimately became Section 1, Power Boilers. The first ASME

6、Code for pressure vessels was issued as Rules for the Construction of Unfired Pressure Vessels, Section , 1925 edition. The rules applied to vessels over 6 in. in diameter, volume over 1.5, and pressure over 30 psi. In December 1931, a Joint API-ASME Committee was formed to develop an unfired pressu

7、re vessel code for the petroleum industry. The first edition was issued in 1934. For the nest 17 years, two separated unfired pressure vessel codes existed. In 1951, the last API-ASME Code was issued as a separated document. In 1952, the two codes were consolidated into one code-the ASME Unfired Pre

8、ssure Vessel Code, Section . This continued until the 1968 edition. At that time, the original code became Section , Division 1, Pressure Vessels, and another new part was issued, which was Section , Division 2, Alternative Rules for Pressure Vessels. The ANSI/ASME Boiler and Pressure Vessel Code is

9、 issued by the American Society of Mechanical Engineers with approval by the American National Standards Institute (ANSI) as an ANSI/ASME document. One or more sections of the ANSI/ASME Boiler and Pressure Vessel Code have been established as the legal requirements in 47 states in the United Stated

10、and in all provinces of Canada. Also, in many other countries of the world, the ASME Boiler and Pressure Vessel Code is used to construct boilers and pressure vessels. Organization of the ASME Boiler and Pressure Vessel Code The ASME Boiler and Pressure Vessel Code is divided into many sections, div

11、isions, parts, and subparts. Some of these sections relate to a specific kind of equipment and application; others relate to specific materials and methods for application and control of equipment; and others relate to care and inspection of installed equipment. The following Sections specifically r

12、elate to boiler and pressure vessel design and construction. Section Power Boilers (1 volume) Section Division 1 Nuclear Power Plant Components (7 volumes) Division 2 Concrete Reactor Vessels and Containment (1 volume) Code Case Case 1 Components in Elevated Temperature service (in Nuclear Code N-47

13、 Case book) Section Heating Boilers (1 volume) Section Division 1 Pressure Vessels (1 volume) Division 2 Alternative Rules for Pressure Vessels (1 volume) Section Fiberglass-Reinforced Plastic Pressure Vessels (1 volume) A new edition of the ASME Boiler and Pressure Vessel Code is issued on July 1 e

14、very three years and new addenda are issued every six months on January 1 and July 1. The new edition of the code becomes mandatory when it appears. The addenda are permissive at the date of issuance and become mandatory six months after that date. Worldwide Pressure Vessel Codes In addition to the

15、ASME Boiler and Pressure Vessel Code, which is used worldwide, many other pressure vessel codes have been legally adopted in various countries. Difficulty often occurs when vessels are designed in one country, built in another country, and installed in still a different country. With this worldwide

16、construction this is often the case. The following list is a partial summary of some of the various codes used in different countries: Australia Australian Code for Boilers and Pressure Vessels, SAA Boiler Code (Series AS 1200):AS 1210, Unfired Pressure Vessels and Class 1 H, Pressure Vessels of Adv

17、anced Design and Construction, Standards Association of Australia. France Construction Code Calculation Rules for Unfired Pressure Vessels, Syndicat National de la Chaudronnerie et de la Tuyauterie Industrielle (SNCT), Paris, France. United Kingdom British Code BS. 5500, British Standards Institutio

18、n, London, England. Japan Japanese Pressure Vessel Code, Ministry of Labour, published by Japan Boiler Association, Tokyo, Japan; Japanese Standard, Construction of Pressure Vessels, JIS B 8243, published by the Japan Standards Association, Tokyo, Japan; Japanese High Pressure Gas Control Law, Minis

19、try of International Trade and Industry, published by The Institution for Safety of High Pressure Gas Engineering, Tokyo, Japan. Italy Italian Pressure Vessel Code, National Association for Combustion Control (ANNCC), Milan, Italy. Belgium Code for Good Practice for the Construction of Pressure Vess

20、els, Belgian Standard Institute (IBN), Brussels, Belgium. Sweden Swedish Pressure Vessel Code, Tryckkarls kommissioner, the Swedish Pressure Vessel Commission, Stockholm, Sweden.压力容器准则美国的压力容器规范历史 在19世纪和20世纪初期,锅炉和压力容器频繁发生爆炸事件。1865年4月27日,苏丹轮船的火管锅炉在密士西比河爆炸,导致轮船在20分钟内沉没,且参加南北战争的1500准备回家的士兵全部死忙。这类大灾难一直持续

21、到20世纪初期。1905年,马萨诸塞州布拉克顿一鞋厂发生毁灭性的火管锅炉爆炸事件,造成58人死亡,117人受伤,财产损失400000$。1906年,马萨诸塞州林恩一个鞋厂发生爆炸,导致死亡,受伤,且持续性损失。这次意外后,马萨诸塞州州长组织成立锅炉标准委员会。1907年8月30日,第一部锅炉设计及结构规范获得通过,长达3页。 1911年,德梅尔上校,美国机械工程师学会主席,成立一个委员会来编写锅炉及压力容器的设计和结构规范。1915 2月13日,第一个美国机械工程师学会锅炉规范发布,叫做锅炉构造规范,1914版本。这是系列美国机械工程师学会锅炉及压力容器规范的开端,最终变成第一章电站锅炉。 第

22、一部关于压力容器的机械工程师协会标准作为热交换器结构规则发布,共8章,1925版本。规定容器直径为6英尺,体积为1.5英尺,并且压力为 每平方英寸30磅。1931年12月,美国石油组织-美国机械工程师学会委员会成立并致力于研究用于石油工业的热交换器规则。1934开始发行第一个版本。接下来的17年,就有两部分离热交换器规则。1951年,美国石油组织与美国机械工程师协会标准作为单独文件发布。1952年,这两部规则合并成一部-美国机械工程师学会热交换器规则,共8章。一直延续到1968年版。那时,原始的规则变成8章,1部是压力容器,另一部分是2章的压力容器替换规则。 美国国家标准协会美国机械工程师学会

23、锅炉及压力容器规则由美国机械工程师学会发布,由美国国家标准协会批准的作为美国国家标准协会美国机械工程师学会文件。更多的美国国家标准协会美国机械工程师学会锅炉及压力容器规则在美国47州和加拿大所有城市作为法定使用。同时,世界上许多其他国家使用美国机械工程师学会锅炉及压力容器规则来制造造锅炉及压力容器。 ASME 锅炉及压力容器规范 美国机械工程师学会锅炉及压力容器规则分成许多章。有些章节涉及到一些特殊设备及使用;有些涉及到特殊材料和设备的操作和控制方法;其他的涉及到设备的安装及维护等。下面的章节与锅炉及压力容器设计和结构有关。 第一章 电站锅炉(1卷) 第3章 节1 核电站元件(卷) 节2 混凝

24、土电抗器容器及防范(1卷) 规则事例 事例1,高温保养元件(核的规则手册的氮-47) 第7章 锅炉供暖(1卷) 第8章 节1 压力容器(1卷) 节 压力容器替换规则(1卷) 第9章 玻璃钢压力容器(1卷) 每三年发布一次新版美国机械工程师学会锅炉及压力容器规则,每六个月发布新的附录,分别是1月1日和7月1日。每当新版规则发布就强制执行,附录的发行允许不执行,但即日起六个月后腰强制执行。 压力容器国际规范 除国际使用的美国机械工程师学会锅炉及压力容器规则外,许多其他的压力容器规范在多个国家可以使用。在一个国家设计的容器在他国使用时经常发生故障,这种情况常发生在国际性结构。 下面的目录是被用于列国

25、中的各种规则的一部分的一些摘要信息: 澳大利亚 锅炉及压力容器的澳大利亚规则,表面活性剂锅炉规范(1200系列):系列1210,热交换器,先进的压力容器设计和结构,澳大利亚标准协会。 法国 热交换器结构规则计算规则,巴黎,法国。 英国 反散射能谱法英国规则。5500,英国标准协会,伦敦,英国。 日本 日本压力容器规范,劳工部,由日本锅炉协会出版,东京,日本;日本标准,压力容器结构,日本工业标准B,8243,由日本标准协会出版,东京,日本;日本高压气体管制法,日本通商产业省,由安全的高压气体工程师协会出版,东京,日本。 意大利 意大利压力容器规范,燃烧过程控制(anncc)国家协会,米兰,意大利

26、。 比利时 国际惯例压力容器结构规则,比利时的标准协会,布鲁塞尔,比利时。 瑞典 瑞典压力容器规范,tryckkarls kommissioner,瑞典压力容器试运行,斯德哥尔摩,瑞典。 Reading Material 17Stress CategoriesThe various possible modes of failure which confront the pressure vessel designer are:(1) Excessive elastic deformation including elastic instability.(2) Excessive plasti

27、c deformation.(3) Brittle fracture.(4) Stress rupture/creep deformation (inelastic).(5) Plastic instability-incremental collapse.(6) High strain-low cycle fatigue. (7) Stress corrosion.(8) Corrosion fatigue.In dealing with these various modes of failure, we assume that the designer has at his dispos

28、al a picture of the state of stress within the part in question. This would be obtained either through calculation or measurements of the both mechanical and thermal stresses which could occur throughout the entire vessel during transient and steady state operations. The question one must ask is wha

29、t do these numbers mean in relation to the adequacy of the design? Will they insure safe and satisfactory performance of a component? It is against these various failure modes that the pressure vessel designer must compare and interpret stress values. For example, elastic deformation and elastic ins

30、tability (buckling) cannot be controlled by imposing upper limits to the calculated stress alone. One must consider, in addition, the geometry and stiffness of a component as well as properties of the material.The plastic deformation mode of failure can, on the other hand, be controlled by imposing

31、limits on calculated stresses, but unlike the fatigue and stress corrosion modes of failure, peak stress does not tell the whole story. Careful consideration must be given to the consequences of yielding, and therefore the type of loading and the distribution of stress resulting therefrom must be ca

32、refully studied. The designer must consider, in addition to setting limits for allowable stress, some adequate and proper failure theory in order to define how the various stresses in a component react and contribute to the strength of that part.As mentioned previously, different types of stress require different limits, and before establishing these limits it was necessary to choose the stress categories to which limits sho

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2