ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:224.88KB ,
资源ID:1359189      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-1359189.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(分数阶傅里叶变换.docx)为本站会员(b****1)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

分数阶傅里叶变换.docx

1、分数阶傅里叶变换分数阶傅里叶变换的MATLAB仿真计算以及几点讨论在Haldun M. Ozaktas 和 Orhan Arikan等人的论文Digital computation of the fractional Fourier transform中给出了一种快速计算分数阶傅里叶变换的算法,其MATLAB计算程序可在www.ee.bilkent.edu.tr/haldun/fracF.m 上查到。现在基于该程序,对一方波进行计算仿真。注:网上流传较为广泛的FRFT计算程序更为简洁,据称也是Haldun M. Ozaktas 和 Orhan Arikan等人的论文Digital comput

2、ation of the fractional Fourier transform使用的算法。但是根据Adhemar Bultheel和 Hector E. Martnez Sulbaran的论文Computation of the Fractional Fourier Transform中提到,Ozaktas等人的分数阶傅里叶变换的计算程序仅有上述网站这一处,而两个程序的计算结果基本相符。本文使用较为简洁的计算程序,Ozaktas等人的计算程序在附表中给出。程序如下:clearclc %构造方波dt=0.05;T=20;t=-T:dt:T;n=length(t);m=1;for k=1:n;

3、 % tt=-36+k; tt=-T+k*dt; if tt=-m & tt=m x(k)=1; else x(k)=0; endend%确定的值alpha=0.01;p=2*alpha/pi%调用计算函数Fx=frft(x,p);Fx=Fx; Fr=real(Fx);Fi=imag(Fx);A=abs(Fx);figure,subplot(2,2,1);plot(t,Fr,-,t,Fi,:);title( =0.01时的实部和虚部);axis(-4,4,-1.5,2);subplot(2,2,2);plot(t,A,-);title(=0.01时的幅值);axis(-4,4,0,2);分数阶

4、傅里叶变换计算函数如下:function Faf = frft(f, a)% The fast Fractional Fourier Transform% input: f = samples of the signal% a = fractional power% output: Faf = fast Fractional Fourier transformerror(nargchk(2, 2, nargin);f = f(:);N = length(f);shft = rem(0:N-1)+fix(N/2),N)+1;sN = sqrt(N);a = mod(a,4); % do spec

5、ial casesif (a=0), Faf = f; return; end;if (a=2), Faf = flipud(f); return; end;if (a=1), Faf(shft,1) = fft(f(shft)/sN; return; end if (a=3), Faf(shft,1) = ifft(f(shft)*sN; return; end % reduce to interval 0.5 a 2.0), a = a-2; f = flipud(f); endif (a1.5), a = a-1; f(shft,1) = fft(f(shft)/sN; endif (a

6、0.5), a = a+1; f(shft,1) = ifft(f(shft)*sN; end % the general case for 0.5 a 1.5alpha = a*pi/2;tana2 = tan(alpha/2);sina = sin(alpha);f = zeros(N-1,1) ; interp(f) ; zeros(N-1,1); % chirp premultiplicationchrp = exp(-i*pi/N*tana2/4*(-2*N+2:2*N-2).2);f = chrp.*f; % chirp convolutionc = pi/N/sina/4;Faf

7、 = fconv(exp(i*c*(-(4*N-4):4*N-4).2),f);Faf = Faf(4*N-3:8*N-7)*sqrt(c/pi); % chirp post multiplicationFaf = chrp.*Faf; % normalizing constantFaf = exp(-i*(1-a)*pi/4)*Faf(N:2:end-N+1); function xint=interp(x)% sinc interpolationN = length(x);y = zeros(2*N-1,1);y(1:2:2*N-1) = x;xint = fconv(y(1:2*N-1)

8、, sinc(-(2*N-3):(2*N-3)/2);xint = xint(2*N-2:end-2*N+3); function z = fconv(x,y)% convolution by fftN = length(x(:);y(:)-1;P = 2nextpow2(N);z = ifft( fft(x,P) .* fft(y,P);z = z(1:N); 从图中可见,当旋转角度时,分数阶Fourier变换将收敛为方波信号;当时,收敛为函数。对于线性调频chirp信号Xk=exp(-j0.01141t2),k=-32,-3132,变换后的信号波形图如下几点讨论一,目前的分数阶傅里叶变换主

9、要有三种快速算法:1,B. Santhanamand和 J. H. McClellan的论文The discrete rotational Fourier transform中,先计算离散FRFT的核矩阵,再利用FFT来计算离散FRFT。2,本文中采用的在Haldun M. Ozaktas 和 Orhan Arikan等人的论文Digital computation of the fractional Fourier transform所述的算法,是将FRFT分解为信号的卷积形式,从而利于FFT计算FRFT。3,Soo-Chang Pei和 Min-Hung Yeh等人在Two dimensi

10、onal discrete fractionalFourier transform和Discrete frac-tional fourier transformbased on orthogonal projections中,采用矩阵的特征值和特征向量来计算FRFT。二,Ozaktas 在Digital computation of the fractional Fourier transform所述的算法,其实不是“离散”分数阶傅里叶变换的算法,而是对连续分数阶傅里叶变换的数值计算。在C. Candan和 M.A. Kutay等人的论文The discrete Fractional Four

11、ier Transform中介绍了离散分数阶傅里叶变换的算法,并给出了计算仿真图形(错误!未找到引用源。)二者吻合得很好。图 1 C. Candan和 M.A. Kutay等人离散分数阶傅里叶变换的算法与连续分数阶傅里叶变换的比较三,在Luis B. Almeida 的论文The Fractional Fourier Transform and Time Frequency Representations中给出了方波的分数阶傅立叶变换图形(图 2)图 2 Almeida 的论文中给出的方波的分数阶傅立叶变换图形该图形与讲义中的图形相符。本文中的仿真结果大致与该图形也相符合,但是令人困惑的是无论

12、用那种算法程序,怎样调整输入信号,在时,虚部都不为零,这与Almeida和讲义中的图形并不一致。而在Haldun M. Ozaktas 和 Orhan Arikan等人的论文Digital computation of the fractional Fourier transform中只给出了幅值的绝对值的图形,并没有给出实部与虚部的结果,因此尚需进一步讨论图 3 本文中计算的时,实部与虚部分布附:Haldun M. Ozaktas 和 Orhan Arikan等人的论文Digital computation of the fractional Fourier transform所述的算法程序

13、%FAST COMPUTATION OF THE FRACTIONAL FOURIER TRANSFORM %by M. Alper Kutay, September 1996, Ankara%Copyright 1996 M. Alper Kutay%This code may be used for scientific and educational purposes%provided credit is given to the publications below:%Haldun M. Ozaktas, Orhan Arikan, M. Alper Kutay, and Gozde

14、Bozdagi,%Digital computation of the fractional Fourier transform,%IEEE Transactions on Signal Processing, 44:2141-2150, 1996. %Haldun M. Ozaktas, Zeev Zalevsky, and M. Alper Kutay,%The Fractional Fourier Transform with Applications in Optics and%Signal Processing, Wiley, 2000, chapter 6, page 298.%T

15、he several functions given below should be separately saved%under the same directory. fracF(fc,a) is the function the user%should call, where fc is the sample vector of the function whose%fractional Fourier transform is to be taken, and a is the%transform order. The function returns the samples of t

16、he ath%order fractional Fourier transform, under the assumption that%the Wigner distribution of the function is negligible outside a%circle whose diameter is the square root of the length of fc. % functionres=fracF(fc,a) % This function operates on the vector fc which is assumed to% be the samples o

17、f a function, obtained at a rate 1/deltax % where the Wigner distribution of the function f is confined% to a circle of diameter deltax around the origin. % (deltax2 is the time-bandwidth product of the function f.)% fc is assumed to have an even number of elements.% This function maps fc to a vecto

18、r, whose elements are the samples % of the ath order fractional Fourier transform of the function f. % The lengths of the input and ouput vectors are the same if the % input vector has an even number of elements, as required.% Operating interval: -2 = a 0) & (a-0.5) & (a1.5) & (a-2) & (a-1.5) flag =

19、 4; a = a+1;end; res = fc; if (flag=1) | (flag=3) res = corefrmod2(fc,1);end; if (flag=2) | (flag=4) res = corefrmod2(fc,-1);end; if (a=0) res = fc;elseif (a=2) | (a=-2) res = flipud(fc);else res = corefrmod2(res,a);end;end; res = res(N+1:3*N);res = bizdec(res);res(1) = 2*res(1); % functionres=coref

20、rmod2(fc,a) % Core function for computing the fractional Fourier transform.% Valid only when 0.5 = abs(a) 0 im = 1; imx = imag(x); x = real(x);end; x2=x(:);x2=x2.; zeros(1,N);x2=x2(:);xf=fft(x2);if rem(N,2)=1 %N = odd N1=fix(N/2+1); N2=2*N-fix(N/2)+1; xint=2*real(ifft(xf(1:N1); zeros(N,1) ;xf(N2:2*N

21、).);else xint=2*real(ifft(xf(1:N/2); zeros(N,1) ;xf(2*N-N/2+1:2*N).);end;if ( im = 1) x2=imx(:); x2=x2.; zeros(1,N); x2=x2(:); xf=fft(x2); if rem(N,2)=1 %N = odd N1=fix(N/2+1); N2=2*N-fix(N/2)+1; xmint=2*real(ifft(xf(1:N1); zeros(N,1) ;xf(N2:2*N).); else xmint=2*real(ifft(xf(1:N/2); zeros(N,1) ;xf(2

22、*N-N/2+1:2*N).); end; xint = xint + i*xmint;end; xint = xint(:); % function xdec=bizdec(x) k = 1:2:length(x);xdec = x(k); xdec = xdec(:); % function F2D=fracF2D(f2D,ac,ar) M,N = size(f2D);F2D = zeros(M,N); if ac = 0 F2D = f2D;else for k = 1:N F2D(:,k) = fracF(f2D(:,k),ac); end;end; F2D = conj(F2D); if ar = 0 for k = 1:M F2D(:,k) = fracF(F2D(:,k),ar); end;end; F2D = conj(F2D);

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2