ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:49.42KB ,
资源ID:14464063      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-14464063.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(矿井地球物理勘探.docx)为本站会员(b****1)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

矿井地球物理勘探.docx

1、矿井地球物理勘探第三册矿井地球物理勘探39矿井物探概述39 .1矿井物探的意义我国能源发展战略是:坚持以煤炭为主体,电力为中心,油气和新能源全面 发展。因此,煤炭作为主体能源的地位将在很长一段时间内保持下去。 而我国以地下采煤为主,开采技术条件复杂,其中地质条件是制约采掘机械化、井下作业 环境和煤矿企业可持续发展的主要因素。 随着科学发展观在煤矿企业的落实, 以及国民经济快速发展对能源需求的骤增,一批高产高效矿井正在建设或陆续投 产,一是要求在探测的采区内在地面选择适宜的勘查手段,如:地面高分辨二维 和三维地震勘探,电法对采区进行探测,为采区规划设计提供地质依据。 二是在 大型重达上千吨综采设

2、备安装前或采区开采前, 在矿井下查明与控制工作面内一切地质异常体,如:小断层和小褶曲、煤层厚度变化、煤层冲刷、剥蚀、煤层分 叉、合并与尖灭、陷落柱、岩浆岩侵入煤层变焦、瓦斯涌出、岩溶及老 空空间分布、可能的涌水点及通道、顶底板富水情况、顶板与围岩的稳定性等等。这些地质异常即使规模小,如果不及时超前探查,不但造成采掘系统布局不 合理,资源浪费,还直接影响高产高效工作面的持续开采及矿井水害的有效防治, 更甚者危及整个矿井和矿工安全。一旦发生问题,损失巨大。由于一个等于煤厚 小断层存在,导致工作面无法正常 推进,设备被迫搬迁,经济损失惊人。例如联 邦德国约有20%左右综采面都遇到没有预料到的地质破坏

3、;前苏联有三分之一综 采工作面,因地质条件变化而被迫搬迁。另外,众多的地方小煤矿,多数开采零 星的煤田边角,原勘探程度低,构造相对复杂,给矿井采区设计和采掘造成很大 影响。据不完全统计,1955年至2002年四十余年来,全国煤矿发生 300m3/h以 上突水达893次,淹没矿井398次,造成直接经济损失达十亿元。例如:1984 年6月,开滦范各庄煤矿2171综采工作面发生充水陷落柱透水灾害,突水高峰 期11h,平均涌水量达123180m3/h,仅21h淹没年产300万吨的整个矿井,8天 后又淹没了吕家坨矿。经济损失达 4 亿元。 1993 年肥城矿业集团国家店矿 -210 北大巷突水,涌水量

4、32970m3/h, 6 个半小时矿井淹没,且株连相邻的南高等矿 和兴隆矿,经济损失达 1.1 亿元。 1996 年皖北煤电公司任楼煤矿 7222 工作面突 水,水量达34570m3/h,由于岩溶性陷落柱突水处水源充足,总水量达 30万m3, 不到 48 小时将整矿井淹没,经济损失达数亿元。在新形势下,仅靠传统的地质方法,查明矿井地质问题是不可能的。如:钻 探及巷探是直接观测法, 优点是能够直观观测被研究的地质体, 结论是明确单一 的,缺点是观测经常是不连续的, 矿井地质人员通过内插或外推得出的结论有较 大误差,甚至导致结论错误。 即使运用当前普遍使用的采区高分辨三维地震勘探 方法,要全部查明

5、落差几米的小断层及其它规模较小的地质异常,仍极其困难。 因此,综合运用各种物探方法在地面或矿井下煤层附近探测地质异常, 以及与采 矿有关的工程地质问题, 是矿井地质工作者首选手段。 尽管所有物探方法其手段 都是间接的,存在多解性和不完备性, 但近几十年来,随着物探仪器实现了数字 化和智能化,其方法和技术日臻完善, 应用范围不断扩大, 运用计算机快速多手 段处理和解释井下采集的各种物探数据, 多种物探资料结合矿井地质等资料综合 解释,大大地克服了多解性, 取得了明显的地质效果。 矿井物探已成为矿井地质 工作中不可缺少的手段。39.1.1 矿井物探的概念地球物理勘探 geophysical pro

6、specting 是地球物理的一个分支,又称应用地 球物理或勘查地球物理, 简称物探。 它是用物理的原理研究地壳浅层的物理性质 及地质构造, 从而寻找与勘查有用矿床及解决其它地质问题的科学分支。 物探方 法的物理基础是地壳中存在许多物理性质不同地质体或分界面, 它们在空间产生 了天然物理场,如:重力场、地磁场、地热场及放射性场等,或者人工物理场, 如:人工电场、电磁场;人工地震波时间场;弹性位移场的局部变化的异常场, 物探工作者在空中、 地面、钻井中或矿井内用各种仪器自动采集观测这些物理场 的变化数据, 通过计算机分析研究所采集的物探资料, 推断解释地质构造和矿产 分布情况。物探方法按所利用物

7、理场的不同分为:重力、磁法、电法、地震、地热及放 射 位等六种勘探方法。也可按观测对象或工作空间的不同进行分类,如下表:煤田地球物理勘探的观测对象包括煤田地质勘探及矿井地质的观测中的大部分内容,其分类见下表:矿井地球物理勘探,简称矿井物探,是用于矿井地质勘查的各种地球物理勘 查方法的总称。它可以在地面和矿井中进行,地面物探主要任务一是在新建矿井中, 为采区 规划设计和先期采区设计提供详细的地质依据; 二是在生产矿井中为工作面、井 巷工程合理布置和采煤工艺的选择提供详细地质资料。地面物探施工简单,探测 效率高,设备对环境的要求低,由于装备和物探技术的进步,在地形条件复杂的 矿区,如:丘陵、山区、

8、沙漠、湖泊水域等也取得了良好地质效果。井下物探主 要任务是在采煤设备安装或开采前, 查明或控制工作面内一切地质异常。 一般在 巷道内以煤层为主要探测对象,与地面物探相比,它具有探测目标近, 物探异常 明显而突出,分辨率高,方法多样,运用灵活,探测范围大的优点,但在多数情 况下,从数据采集、处理和解释各环节必须考虑全空间问题等特点。39 12 矿井物探发展概况地 球 物 理 勘 探 产 生 于 二 十 世 纪 二 十 年 代 初 , 法 国 Corad 和 Marcei Schlumberger首创电法勘探技术,地震勘探方法最早的折射波法(19191921年), 二十世纪三十年代美国地球物理工作

9、者第一次用地震反射资料绘制出得克萨斯 Ltberty 地区盐丘图。随后十年重力、磁法、电磁波法、测井以及海洋物探也得 到了发展。为适应第二次世界大战的紧急需要, 众多物探方法用于探查矿产、 潜 水艇和火力阵地。其后物探基础理论, 电子学、计算机和信息处理等学科飞速发 展,给物探技术发展提供了强有力技术支持。 我国物探技术是从 1939 年开始的, 当时,物探老前辈翁文波先生从英国伦敦大学获得哲学博士学位回国后, 在原中 央大学物理系开设地球物理课程,培养物探人才。 1940 年用自制的双磁针不稳 定式磁力仪在天门油矿和四川沟气矿进行了重力试验。建国后, 1951 年石油部 门成立我国第一个地震

10、队。煤炭部门于 1954 年 8 月组建煤炭系统第一个电法队 (地面电法队)开始煤田测井,随后 1955 年在河北唐山开滦煤矿建立第一个地 震队,五十年来全国地震队伍已发展到几十个,特别是 80 年代以来,由于数字 地震仪的引进, 道数不断扩展, 多次覆盖、高分辨率地震和三维地震勘探的普及、 资料处理和人机联作解释系统的发展, 使煤炭物探技术在煤田勘探和煤矿生产中 发挥着愈来愈重要的作用。 矿井物探研究和应用始于二十世纪六十年代, 四十年 来,各产煤国家根据自身地质特点发展了不同物探方法。 我国矿井物探起步较晚, 近三十年来,矿井物探得到迅速发展,取得了显著的地质效果,但总体来看,我 国矿井物

11、探技术尤其是物探设备方面与世界先进水平还有一定差距。矿井物探方法很多, 较为有效和常用方法主要为无线电透射法、 高分辨二维 和三维地震勘探、槽波地震勘探、矿井直流电法、地质雷达和声波探测等方法。煤矿地震勘探, 1975 年唐山煤矿与重庆煤研所合作用瑞典六道轻便地震仪, 用锤击震源在井下进行了折射波法试验, 在厚度 1.478m 煤层中,测出的煤厚绝 对误差平均为0.25m,尽管探测深度很小,但试验初步成功对各煤矿都有一定意 义。随后由折射波法试验发展为槽波法试验和应用。 1955年,F.F埃维逊在新西兰煤矿一个煤层中首先激发与接收到煤层波(槽波) ,并预言可用于煤矿; 1963 年,Th.克雷

12、及其合作者的研究奠定了槽波地震勘探的理论基础。 70年代末,提取与利用槽波埃里震相之后槽波勘探技术取得了突破性进展。 1980 年前后,以 法国、英国为首,澳、匈、捷、前苏联、美等国都先后发展起来。 1977 年,我 国重庆煤分院、焦作矿业学业院、 渭南煤矿专用设备仪器厂与徐州、 焦作等矿务 局合作,首先在井下开展试验,并于 1980 年前后研制成功 TYKD-1 型非防爆的 9 道模拟磁带矿井地震仪和防爆的 TEKC-9 型模拟磁带矿井地震仪,这些工作为 后来的研究打下了基础。法国 WBK 公司于 1980 年推出了 SEAMEX-80 型遥测 式防爆数字地震仪, 该仪器只生产了一套, 德国

13、物探工作者用该仪器进行了槽波 技术研究工作和实际槽波探测工作,随后该公司于 1985 年又推出改进型SEAMEX-85型多道遥测防爆数字地震仪软件ISS,将槽波地震勘探向实用化推 进了一大步。之后,我国煤炭科学研究总院西安分院引进了 SEAMX-85 型仪器 及软件系统ISS,接着澳大利亚BHP公司和煤科总院西安分院也相继研制了类 似的遥测防爆数字地震仪。从此, 国内开始了系统生产性能试验。 由于微型计算 机及其系统在综合性能上日新月异, 国内外不断推出槽波地震勘探微机数据处理 系统,匈牙利国家物探研究所推出了 SSS-1型集中式信号增强型防爆地震仪的微 机槽波资料处理系统。在国内, 1983

14、 年,中国矿业大学开展槽波在煤层中传播 规律的模拟研究,成功地研制出 MISS 型槽波地震勘探数据处理微机程序系统。 煤科总院西安分院也为 MD-902型防爆双道数字地震仪开发出ISS-902型槽波的 地震数据处理处理微机软件系统。该系统体积小,重量轻、功耗小、成本低,可 设置在矿业集团或矿内, 系统简单,可独立运行, 能及时处理井下槽波采集数据, 解释出探测地质成果, 也可以将各矿微机数据处理实现通讯和联网, 使其资源共 享。19881989 年,西安煤科分院从日本 VIC 株式会社引进瑞利波探测技术及 GR-810 专用仪器。在 1991 年将该法应用于煤矿井下煤层残厚及独头超前探测, 同

15、时研制出瑞利波瞬态激震法的设备 MRD- I、U型仪器,在许多煤矿探测煤厚、 小构造、薄煤带等取得良好效果。廿世纪八十年代至今,在中国煤田地质总局和国家开发银行组织和领导下,在全国重点煤矿大面积开展了地面高分辨数字二维和三维地震勘探工作, 在地震5文档来源为 :从网络收集整理 .word 版本可编辑 .欢迎下载支持 .地质条件较好地区,运用高分辨二维地震能较可靠查落差 10m的断层和波幅为 10m的褶曲,三维地震勘探可较可靠地查明落差 5m的断层,幅度5m的褶曲, 解释煤层厚度变化趋势,配合电法预测煤层顶底板水文地质条件, 查明规模较大 的陷落柱、采空区及其它地质异常, 为众多矿井采区设计、调

16、整采场和采面布置 提供了详细地质资料,取得了明显社会和经济效益。高分辨地震探测技术也可应用于井下,国外在廿十世纪 50年代就开展了该项技术研究,原西德用该技术沿巷道探测隔水层厚度; 90年代,法国、加拿大等国在黄铜矿、钾盐矿井中获得了很高分辨率地震剖面。 1995年煤科总院西安分院在我国龙口煤业集团北皂矿和淮南新集煤电公司八里塘首次使用 DYSDJ型多道遥测防爆地震仪,开展了煤矿井下高分辨地震研究工作, 由于不受上覆松散低速层影响,地震波主频显著提高,提高了分辨率,对于小断层、煤层厚度、下 组煤隔水层厚度及可能的导水断层探测十分有利。声波探测主要应用于工程地质及矿山工程中, 廿十世纪60年代末

17、期,美国、日本、联邦德国与瑞典等国将声波探测技术应用于岩体探测, 以研究岩石力学性质、岩体裂隙、顶板稳定性及围岩强度分类, 70年代以来,我国铁路、建筑、水电、交通和煤炭等部门的勘测设计和施工中得到广泛应用。 声波探测根据声源不同可分为主动探测和被动探测两种方法, 主动探测其声波为人工激发,而被动探测中,声源是岩体遭受自然界或煤层采动等其它力作用时, 在变形或破裂过程中,由岩体自身发射。声波探测主要解决工程地质问题有: 岩体的工程地质分类;确定围岩松驰带 的范围,为合理设计锚杆长度、喷浆或衬砌厚度提供依据;测定岩体物理力学参 数;预裂爆破与注浆效果的检测;混疑土探 伤及强度检测;冻结法凿井时,

18、冻结 厚度的检测;断层、裂隙及溶洞等地质异常探测,地应力测试;矿井冒顶、瓦斯 与水突出,煤矿开采过程出现的“两带”(冒落带、裂隙带)检测及地震灾害预 报等。山东煤田地质局与澳大利亚联邦工业科学组织探矿采矿部 (CSIRO)于1996年开始对微地震技术研究,并应用于煤矿“两带”监测中。采煤过程中会产生垮 落带和断裂带(简称两带),为保证煤矿安全生产,又要最大限度地增加煤炭可 采储量,需要根据采矿时形成的实际“两带”高度留设防水或防砂煤柱,用常规方法,如据经验公式或用地面高分辨率地震、钻探及测井,确定“两带”范围具 有一定的局限性。由于大多数为点控制, 时间上只为某一时刻的瞬时值,不是动态的,且在

19、不同地质条件下,煤矿“两带”发育情况差异很大,仅据个别矿井获 得的观测结果,难以推广到其它矿井。微地震技术类似天然地震,在采矿时“两 带”发生的同时,会产生强度较弱的地震波,在一定深度的钻井中和地表或矿井 中,安置传感器(也称检波器)用电缆连接到地面微地震监测仪上,连续动态观 测微地震事件,经计算机处理和解释确定裂隙带和冒落带高度。地质雷达(矿山雷达)是基于电磁波反射原理探测地质构造、地下水体、煤层厚度、煤层冲刷、剥蚀以及采空区垮落带等地质异常。 从1937年4月29日美国公布第一专利起,50年代美国率先进行了地质雷达可行性方案研究, 70年代美国地球物理勘探公司(GSSI)推出SIR系列商品

20、化地下雷达系统。随后,日 本、加拿大等国在SIR技术基础上,开展了地质雷达探测技术研究。 1983年,日本以厚.坂山等人研究了地质雷达在地基中的实用性后,将 SIR产品改型为0A0系列产品。70年代来,加拿大A-Cube公司,针对SIR系统的局限性对系 统结构和探测方式作了重大改进,采用微机控制、数字信号处理及光缆传输高新 技术,推出了 EKKO GPR系列产品。80年代瑞典地质公司也推出了 RAMAC系 列的数字式钻孔雷达系统。我国煤科总院重庆分院从 70年代开始矿井地质雷达探测方法及仪器的研究,他们针对我国煤矿井下的环境条件,于 1987年研制出防爆型KDL系列产品,该产品不仅在煤矿井下,

21、而且在隧道、市政建设等方面 推广使用,取得良好的效果。电磁波法,国外从二十世纪20年代开始研究,首先在磁化矿床上进行试验。 我国在60年代开始探索在矿井下应用无线电波透视技术,如原地矿部物探所研 制成功DK型透视仪,用以寻找金属盲矿体的探测试验。 70年代末,煤科总院重庆煤科分院研制成功 WKT-1 (不防爆)、WKT-2 (防爆)及80年代末推出的 WKT-F 3型轻便防爆坑透仪。90年代,又研制出 WKT-D型大距离智能坑透仪及 资料处理的CT或震技术。在80年代,河北省煤研所也完成了 WKT型仪器的防 爆改造工作,WKT-D型坑透仪,由微机控制,测量数据自动数字显示,自动记 录和内存储;

22、数据处理有专门的软件、 CT成像处理软件及CAD自动成图,对井下导体采取综合抗干扰措施,穿透距离可达350450m,由于该仪器设备先进, 操作简单,工作效率高,探测效果好,因此,在国内众多局矿得到广泛应用,取 得了显著经济和社会效益。瞬变电磁法(Translemt Electromagnetic Methods)或称时间域电磁法(Time domain electromagnetic methods 简称 TEM 或 TDEM。国外 TEM 法理论研究主 要在地面和钻孔中进行,前苏联上世纪50年代建立了 TEM解释理论和野外施工 的方法技术,60年代,前苏联三十多个TEM队在全国各盆地进行普查

23、,并成功 地发现了奥伦堡地轴上的大油田。前苏联的TEM法理论研究一直处于世界前列, 5060年代由八.八.BaHb刃H,冰gaHOB提出电磁波拟地震波的偏移方法,他 用“偏移成像”的广义概念,在电磁法中确定了正则偏移和解析延拓偏移两种方 法。80年代末,KameHecU访,又从激发激化现象理论出发,研究了 TEM法激电 效应特征及影响,成功地解释了 TEM法晚期段电磁响应的变号现象。欧美各国从 上世纪50年代就提出了该方法,也做了一些试验,但大规模发展该方法始于 70年代,欧美各国在TEM法二、三维正演模拟技术方法研究日臻完善,而 TEM法解释中时深转换理论和应用研究一直走在前列,并提出了许多

24、算法。国内TEM法研究始于上世纪80年代,由长春地质学院(现吉林大学),原地 矿部物化探研究所,中南工业大学和中国地质大学等单位分别在理论、方法、 仪 器和野外试验方面做了大量工作,建立了一维正、反演及方法技术理论, 研制出 TEM仪器,而大功率和多功能瞬变电磁仪器主要依赖进口。国内学者在 TEM法数 据处理和解释中也做了大量工作, 提出了 TEM波场转换和拟地震波处理方法。中 国矿业大学于景邦博士建立了 TEM法时间一深度换算数学模型,采用多匝数,小 回线组合装置探测巷道不同位置的含水构造,取得明显的地质效果。矿井直流电法,前苏联及匈牙利在理论和井下方法等方面开展了广泛研究, 并处于领先地位

25、。80年代我国煤科总院唐山分院、河北煤研所、煤科总院西安 分院等单位开始将直流电法应用到井下, 主要探测工作面顶、底板内的含水及导水构造。1990年开始,中国矿业大学与淮北矿业集团合作开展了多种矿井直流 电法方法有效性的研究工作,并与煤矿高分辨率地震勘探相结合, 探测下组煤隔 水层厚度。渭南煤矿专用设备厂在80年代研制出模拟磁带煤厚测量仪,在矿井下使用。 随后,淮南工学院与 长沙旭华无线电厂合作开发了 KDY-1型数字测煤厚仪,在一 些矿区得到应用。另外,高精度重力测量、红外测温法及氡气测量也在一些煤矿 井下应用,用以解决井下小构造、岩溶陷落柱及含水预测等问题。地球物理测井(测井),测井起源于

26、法国,1927年9月,法国人斯仑贝谢兄 弟发明了电测井,开始在欧州用于勘查煤和油气,两年后传到美国和前苏联。1939 年12月,我国使用电测井勘查石油与天然气。 煤田测井始于1954年4月22 日, 五十年来,经过几代人的努力,我国煤田测井仪器设备不断更新换代, 从五十年 代的半自动测井仪,手动绞车,六十年代的半自动照像测井仪, 七十年代的车装 静电显影测井仪到八十年代电子计算机控制的数字测井仪, 测井仪器已全面进入计算机数字采集、传输和资料的自动处理。 其应用领域迅速扩大,资料解释水平 和地质成果不断提高。煤田测井已从简单的定性、定深、定厚,向全面定量解释 发展。目前,可提供煤层层位、煤岩层

27、产状、煤岩层力学性质(强度指数、 杨氏横量、泊松比、稳定性等),断层参数(性质、断距、破碎带等),煤层煤质参数 (碳灰水含量、元素含量、挥发分、发热量等)、岩层孔隙度、岩性砂泥水含量、 含水层参数(涌水量、补给关系、水位等)多种地质成果,其中大部分已应用于 地质报告中。煤田测井解决地质问题的能力、薄层分层解释水平均处于世界先进 水平。煤田测井在煤矿地质勘探中已成为不可缺少的勘探手段, 它可能减少钻井取芯工程量,提高勘探速度、降低勘探成本,已经得到广大地质工作者的公认。 随着科学技术的发展和应用领域进一步延伸,煤田测井将发挥更大的作用。39. 2矿井物探的主要类型按照本手册对矿井物探工作范围的界

28、定,按物理场列表分类如下:类别方法地震类地面咼分辨二维和二维地震勘探 横波及多波为分量地震勘探 井下咼分辨地震勘探 槽波地震勘探面波(瑞利波)地震勘探 岩体声波探测、微地震探测电法类直流 电法电测深法:地面电测深、顶底板电测深法电剖面法高密度电阻率法偶极法交流 电法频率测深法电磁类无线电透视法矿山雷达天然交变电场法 瞬变电磁法测 井 类电 测 井自然 电场 法自然电位法 电极电位法直流 电场 法视电阻率法 电流法 侧向测井 微电极系测井 激发极化法交流 电场 法感应测井放射性 测井自然伽玛法 人工伽玛法 中子法其它 测井法声波测井:声波速度法、声波幅度法岩层产状测井地温测井磁测井重力测井井内技

29、术 测井法井斜、井径、井液电阻率超声成像测井等其它矿井微重力测量 红外遥感技术 氡气测量39. 2. 1 各类物探手段的适用条件和 易解决的问题各类物探手段所反映的物理特征决定了它的适用条件和范围。 女口:地震手段测量的参数为折射、反射、透射地震波的旅行时,表现的物理特征是地下岩石密 度和弹性模量,它们决定地震波传播速度;电法测量地下岩石电阻、电压、电位 等参数,表征的物理场是电导率等。因此,应用物探方法时,要深入研究勘查对 象的地质物性条件,对症下药,分析是否满足适用条件,选用适合的方法,注意 用多种有效的物探手段综合解释, 才能有针对性解决矿井地质勘探中的问题, 取 得良好的地质效果。下表

30、简要列出各类物探手段利用参数,适用条件和解决的地质任务方法利用参数适用条件解决的地质任务地震类折射波法岩石纵波、横波、转换波的运动 学、动力学等特征,如速度、振 幅、频率和相位等。折射法应U2Ui ;反射法应满足地层 分界面有明显的波阻抗差;煤层厚度 1米左右,煤层间距大于10米,地层 倾角15时最有利。探测适合成矿条件的地质构造、盖层厚 度。广泛应用于普、详、勘探各阶段。三维地震解决煤矿采区内小构造,配合 电法对水文地质条件进行评价。反 射 波 法高分辨二维三维地震瑞雷波法根据瑞利波各谐波分量沿垂直自 由表面方向衰减不同,测量已频 散的瑞利波各分量的传播速度。适用于探测几十米以内地质体的几何

31、 形态。岩土分层,断层、洞穴等地质构造或异 常。声波探测由声源激发的声波和超声波在岩 体中传播的速度、振幅频率、相 位等。适用于工程地质及矿山工程小范围探 测。研究岩体的物理力学性质、构造特征及 应力状态等。槽波地震勘探利用在井下煤层中激发和传播的 导波(煤层波)煤层上下界面的速度差异。探测煤层不连续性。微地震探测记录和分析具有统计性质的频 度、振幅分布能率及频率分布等 量,及利用P波、S波的走时和 射线方向定位。岩体变力变形和破坏自己发射出的声 波和微震。矿山安全动态监测,自然地质灾害预测, 建筑工程防震与抗震测试。电法类激发激化法极化率、衰减时探测对象与围岩有明显的电性差异。探测含水地层。自然电位法自然电位差浅层地下水流速足够大,有一定矿化 度。在岩溶、滑波及覆盖层下地下水沿断裂 带活动的情况。矿 井 直 流 电 法顶、底板电测深井下深度方向电性变化规律探测地质体与围岩有明显的电性差 异。井下水文地质条件、确定煤厚及断裂构 造。层测深法煤层方向视电阻率或视电阻率变 化。煤层顶底板与煤层有明显的电性差 异。追踪断层在煤层中延深情况,探测煤层 中隐伏断层及其它构造扰动。电剖面法巷道方法某一深度岩石电性变 化,主要测量参数为电阻率。预测断层构造带含水程度等。单极偶极法探测构造扰动,预测掘进头前方地质构 造。高密度电阻度法预测工作面开米地质条件和水文地质条 件。直流透视法

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2