ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:25.92KB ,
资源ID:15693636      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-15693636.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(强烈推荐郑州市某中学教学楼土木混凝土毕业论文样板.docx)为本站会员(b****6)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

强烈推荐郑州市某中学教学楼土木混凝土毕业论文样板.docx

1、强烈推荐郑州市某中学教学楼土木混凝土毕业论文样板(此文档为word格式,下载后您可任意编辑修改!)1 设计资料1.1工程概况(1) 建设地点:郑州市市区(2) 工程名称:郑州市某中学教学楼(3) 工程概况:建筑总高为15 m。共4层,每层层高4.20 m,室内外高差0.45 m。(4) 气候条件:夏季主导风向为南风,冬季主导风向为北风.基本风压0.4 kNm2,基本雪压0.3 kNm2。(5) 该地区地质条件:根据对建筑地基的勘测,该地区表层0.2m-0.6m为杂填土,下层为轻亚粘土,厚约3.0m-4.2m,地基承载力特征值为180 kNm2 。(6) 场地情况:场地平坦,无障碍物,地下无古代

2、建筑,用地四周无住宅区(7) 地面粗糙类型:C类(8) 抗震设防烈度为7度,建筑耐火等级二级,建筑耐火年限50年。1.2建筑设计说明书本说明是对建筑方案的必要说明。根据防火疏散要求确定楼梯位置,走廊与梯段净宽,以及办公室布置,墙体防水等构造做法。此外根据规范给出了建筑的等级要求。该工程位于郑州市市区,交通方便,各种材料供应及时。建筑面积3339.04,建筑层数四层。建筑场地平坦,无障碍物,地下无古代建筑物。地质情况良好。1.2.1设计依据 (1) 建设行政主管部分对本项目的批复文件。(2) 与甲方签订的设计合同及经甲方同意的建筑方案。(3) 现行国家有关建筑工程设计规范、标准:中小学建筑设计规

3、范 (GBJ99-86(2001版))建筑设计防火规范 (GBJ16-87(2001版))1.2.2 方案说明(1)该工程为郑州市某中学教学楼,建筑结构形式为钢筋混凝土框架结构建筑主体高度为15.000 m,基础形式为条形基础。(2)本设计中柱距为7.20m,进深为6.60m,楼梯开间为3.6m。 (3)按二级防火要求,楼梯设在了建筑的两端,且在建筑的两端均有安全出口,满足防火要求。(4)本工程0.000相对于绝对标高值(黄海系)104.51。(6)本设计中建筑长50.900m,在建筑左侧设有厕所,厕所地面低于同层教室地面30mm。(7)为了防潮和预防洪水季节雨水进入室内,设室内外高差,高差4

4、50mm。 (8)为了采光通风满足要求,窗地比均大于17,窗台高900mm。(10)屋面防水采用三级防水,不上人屋面。1.2.3等级说明(1)根据建筑抗震设计规范,本工程为丙类建筑。(2)本工程安全等级为二级,设计使用年限为50年。(3)本工程抗震设防烈度为7度,设计基本地震加速度值为0.15g。设计地震分组为第一组;场地类别为类。(4)建筑物抗震等级:框架为3级。(5)本工程地基基础设计等级为丙级。(6)本建筑物防火等级为二级。1.2.4建筑设计说明及构造做法(1)长度单位毫米为mm,标高单位米为m。(2).本工程共四层,室内外高差-0.45m,首层室内地坪标高0.000m,建筑总标高15.

5、000。(3).建筑材料:现浇的框架柱、梁、板、楼梯间混凝土均为C30,梁柱受力筋HRB335,箍筋HPB235,所有的板钢筋HPB235,外墙加气混凝土砌块250mm宽,内墙加气混凝土砌块200mm。(4)卫生间:地面低于同层楼地面30mm,向地漏找坡1%。地面采用防滑地砖,墙面采(5)屋面做法:屋面做法详见中南98ZJ001 屋16;楼地面做法:楼地面做法详见中南98ZJ001 楼6;(6)各房间内墙面做法采用混合砂浆墙面,做法详见中南98ZJ001 内墙4。(7)四层楼梯间设有通向屋顶的通道,屋顶要开检修孔800mm800mm。(8)落水管直径为100mm。1.3结构说明书1.3.1工程

6、概况(1).本工程为现浇混凝土框架结构,房屋高度详见建筑图,基础为钢筋混凝土条形基础。(2).根据国家现行规定,本工程建筑结构按7度三级抗震设防,基本风压为0.40kNm,结构设计使用年限为50年。(3).设计基本地震加速度为0.15g,设计地震分组为第一组,抗震设防类别为丙类,场地类别为II类,建筑结构安全等级为二级,基础设计的等级为丙级。(4).依据规范、规程、标准1.3.2设计楼面活荷载(1)不上人屋面:0.5 kNm(2)楼面及卫生间:2.0kNm(3)走廊、楼梯:2.0kNm1.3.3材料(1).混凝土等级:所有混凝土的强度等级都为C30.(2).钢筋:HPB235(A)、HRB33

7、5(B)、HRB400(C)(3).墙体:0.000以上填充墙采用加气混凝土砌块,M5混合砂浆砌筑。1.3.4楼板(1).板的设计说明详见各结施图及国家建筑标准设计图集混凝土结构施工图平面整体表示方法制图规则和构造详图(03G101-1)(2).板的混凝土保护层厚度均为20mm。(3).HPB235钢筋所注长度不包括弯钩长度.锚固长度为24d,板中受力筋的短向钢筋放在长向钢筋之上1.3.5梁、柱(1).梁、柱的设计说明详见各结施图及国家建筑标准设计图集 混凝土结构施工图平面整体表示方法制图规则和构造详图(03G101-1)(2).混凝土保护层厚度均为35mm(3)混凝土柱锚入基础梁的钢筋应在基

8、础施工时预埋,预埋钢筋的直径数量同上部柱1.3.6墙体(1).填充墙的长度5m时, 每隔3-4m在墙中设200X墙厚砼构造柱, 柱主筋上下分别锚(2)女儿墙在每一相交轴线上均设250X250混凝土构造柱1.3.7构造柱(1).构造柱纵筋锚于基础内直段长度la,并弯直钩 250mm直钩.纵筋层间搭接长度la,箍筋为100,且加密高度不能小于500(2).穿楼面的构造柱 ,纵筋在穿楼面处应上下贯通,在楼面以上才能搭接;(3).墙与柱连接处沿柱高每500mm设218 拉结筋,拉结筋伸入墙体内长度不小于1000mm,遇门窗洞按实际长度截取,钢筋伸入柱内不少于210mm.1.3.8其他(1)卫生间及管井

9、周边均做混凝土反边,宽度同墙;(2)所有设备基础均以厂家订货为准,且待设备到货核实后方可施工。(3)未经技术鉴定或设计许可,不得改变结构的用途和使用环境。2 结构的选型和布置2.1 结构选型本建筑只有4层,且功能较少,为方便布置房间和便于管理采用大柱网框架结构。为使结构有较大的刚度本设计中楼面、屋面、楼梯等均采用现浇结构;基础为柱下单向条形基础。2.2 结构布置本设计中柱距为7.2m。根据结构布置,本建筑平面均为双向板。本建筑由于楼面活荷载较大,楼面板和屋面板厚度取120mm。材料选用:混凝土:C30 钢筋:纵向受力钢筋采用热扎钢筋HRB335,HRB400;其余采用热扎钢筋HPB235。墙体

10、:内外墙均采用粉煤灰轻渣空心砌块390240190,重度=7KNm3.窗:钢塑门窗, =0.35KNm2.门:木门具体情况见结构布置图2-1。 图2-1结构平面布置图2.3 初估梁柱截面尺寸2.3.1 按大跨度进行计算纵向框架梁: Based on DeadLoad Redistribution: MethodologyHarry W. Shenton III, A.M.ASCE1; and Xiaofeng Hu2Abstract: A new method for damage identification in large, massive civil structures is pre

11、sented, which is based on the idea that dead load is redistributed when damage occurs in the structure. The method uses static strain measurements due to dead load only as input to the identification procedure. An analytical model of a fixed-fixed beam is developed in which the damage is represented

12、 by a section of reduced flexural rigidity. The damage state is determined by the location, length, and severity of the stiffness reduction. A forward analysis of the beam response is first presented to illustrate problem and is solved using a genetic algorithm. The proposed method correctly identif

13、ied damage in the beam for a wide range of locations and damage severities. The identification procedure, in general, it is close to the inflection point of theundamaged beam, where the dead load strain is zero. The effect of measurement noise on the ability to identify damage is investigated in the

14、 companion paper.CE Database subject ; Strain; Damage.Introduction:Structural of advanced technologies to the automated detection and assessment of deterioration or damage in a structural system. The concept,which in recent years, involves the use of advanced sensors, microprocessors, communication

15、systems, and algorithms to automatically sense, locate,assess, diagnose, and report on the condition of a structural system. Applied to a civil structure, a structure due to sustained load or environmental factors, andor to detect rapid changes due to rare, earthquake, be utilized on an as-needed ba

16、sis, or as part of a permanent, long-term can generally be classified as either dynamic- or static-based techniques. The more popular dynamic techniques are based on the premise that when a structure is damaged, the associated change in the structure will result in a change in the natural frequencie

17、s, mode shapes, damping ratios, modal strain energies, or other dynamic characteristics of the system. By measuring one or more of these properties of the damaged structure (and in some cases the undamaged structure) the location and extent of damage could be identified. The dynamic procedures requi

18、re some type of dynamic excitation; the most popular are ambient vibration, impulse response, and forced . Accelerations are usually measured in the dynamic-based techniques. A tremendous amount of work conducted on damage detection based on dynamic responses. Doebling et al. (1996) provides a compr

19、ehensive literature review of the work in this area. The review is updated for literature published between 1996 and 2001, in Sohn et al. (2003). While some applied to large, massive, civil structures. First, it is very difficult to excite a large structure to a level that v, ill elicit changes in t

20、he signal outputs resulting from localized damage. It is often impractical and too expensive to attempt to excite the structure at all in a controlled way, and therefore, many dynamic techniques rely on ambient vibrations. Second, in an ambient vibration survey the excitation is provided by a source

21、s. These same sources are present in a forced vibration test, but are usually not measured or accounted for in the analysis and excitation. Third, field tests that the variability of the test data from replicate tests conducted on different days, due to such things as temperature and extraneous exci

22、tation sources, can be of the same order of magnitude as the changes due to the damage imposed; thus the damage could not be successfully identified (FmTar and Doebling 1997). Static-based techniques work under a similar premise as the dynamic-based techniques, onl5 using static excitations and meas

23、ured responses. In this case a static load is applied to the structure and the response, typically displacement or strain, is measured at one or more locations. Sanayei and Onipede (1991) used a finite element model and measured deflections to determine the stiffness properties of the structure. Ban

24、an et al. (1994a,b) developed a framework for identifying parameters in a structure based on static response quantities. The problem was cast as a constrained, nonlinear minimization problem, using either a force-error estimator or a displacement-error estimator. The problem was solved by recursive

25、quadratic programming. The procedure was tested on a 25 member Bowstring truss. Hjelmstad and Shin (1997) used a similar approach along with an adaptive parameter grouping scheme and a data perturbation scheme to address the problems of sparce and noisy data. Sanayei and Saletnik (1996a,b) modified

26、the procedure developed earlier by Sanayei and Onipede (1991) to use static strain measurements instead of displacements. Parameters were estimated by minimizing the error between the theoretical and measured strains in the structure resulting from a series of concentrated forces. Liu and Chian (199

27、7) developed a procedure for identifying the crosssectional areas of a truss using static strain measurements resulting from a series of concentrated forces. A closed-form solution is obtained for the truss. A numerical example is presented along with model test results. Most recently, Chou and Ghab

28、oussi (2001) used a genetic algorithm to identify damage in a truss structure based on measured deflections. The static-based techniques proposed to date also face practical challenges when applied to large, civil structures. First, it is nearly impossible to apply a controlled lateral load to a lar

29、ge civil structure. This would require a reaction structure of size equal to that of the structure and a tremendous force actuator. Second, some of the techniques mentioned use static deflection measurements in the identification procedure. However, in most cases it is impractical to measure deflect

30、ions in a large structure, simply because there is not a fixedabsolute reference to make the measurement against. An alternative method for damage detection in large civil structures developed that is aimed at eliminating some of the practical problems associated with the other methods mentioned pre

31、viously. While the procedure could be used on an asneeded basis, it is suited more toward permanent long-term of dead load in the structure that takes place when damage occurs. The primary load carried by a large civil structure is its own weight; in many cases (take, for example, a large bridge in

32、a nonseismic region) the live load effects are insignificant relative to the dead load effects. Once built, the dead load results in a certain distribution of stress in the structure, which for all intent and purposes should remain constant throughout the life of the structure. However, when damage occurs, whether it occurs gradually or instantaneously, this will result in a redistribution of dead load stress in the structure. At the same time the magnitu

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2