ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:51.68KB ,
资源ID:17084781      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-17084781.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(阳离子型有机絮凝剂处理含油乳化废水的研究.docx)为本站会员(b****0)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

阳离子型有机絮凝剂处理含油乳化废水的研究.docx

1、阳离子型有机絮凝剂处理含油乳化废水的研究阳离子型有机絮凝剂处理含油乳化废水的研究机械加工行业产生的含油乳化废水中油的存在方式有3种:第1种是浮油,即游离油,粒径大于100m;第2种是分散相油,粒径介于10100m;第3种是乳化油,粒径小于10m。以乳化油状态存在的油主要来自废乳化液,由于乳化剂分子在油水界面上定向吸附并形成坚固的界面膜,同时增大了双电层的有效厚度,使得双电层的电位分布宽度和陡度增大,使油高度均匀地分散在水中,所以乳化油滴能稳定的存在于水中,不易去除,一般的混凝沉淀或混凝气浮对它的处理效果不理想。对于这种废水目前应用较多的处理方法是凝聚法,但凝聚剂的应用较为单一,多为无机混凝剂,

2、如硫酸铝、硫酸铝锭、聚合氯化铝、聚合铝铁等,这类药剂存在处理效果不理想;投药量大、药剂费用高;产生的絮渣多、含水率高、不易后续处理的缺点。在有机药剂方面,处理机械行业含油乳化废水用有机絮凝剂特别是阳离子型有机絮凝剂的研究和应用相对滞后。本文采用阳离子聚丙烯酸胺(cationic polyacrylamide,缩写为CPAM)、二甲基二烯丙基氯化铝(dimethyldiallylammonium chloride,缩写为DM-DAAC)与丙烯酸胺的共聚物(poly DMDAAC-AM,缩写为PDA)、二甲基二烯丙基氯化铝的均聚物(poly DMDAAC,缩写为PD)3种阳离子有机絮凝剂单独处理及

3、与无机混凝剂复合处理含油乳化废水进行试验研究。1 水质及试验方法1.1 试验用水为模拟含油乳化废水,用从轴承生产车间取来的废乳化液与自来水兑制成一定浓度的含油乳化废水,各项水质指标见表1。表1 试验用水水质(CODcr)/(mgL-1)油/(mgL-1)pH值水温/11402169.8715废水排放标准为:(CODcr)100mg/L,(油)10mg/L,但考虑到实际产生的含油乳化废水中往往还含有少量凝聚法不能去除的可溶性有机物质,为了使得到的试验数据更接近实际,最佳投药量按照出水(CODcr)70mg/L,(油)8.0mg/L确定。1.2 试验方法取含油乳化废水水样300mL于500mL烧杯

4、中,加入不同量的药剂,在200r/min的转速下快搅1min,然后转速降至100r/min,继续搅拌3min,然后进行气浮,取浮渣下10cm处水样测定水质。2 试验结果与讨论2.1 单独使用阳离子有机絮凝剂分别将3种阳离子有机絮凝剂按下列质量浓度加入水样:1.5,10,20,40,60,80,100,200mg/L。混凝后均没有产生絮凝体,水样没有处理效果。调节水样pH值依次为:10.50,9.87,8.55,7.08,6.07,5.03,3.73。加入3种阳离子有机絮凝剂,投药质量浓度均为50mg/L,混凝后仍未产生絮凝体,水样没有处理效果。可以认为产生上述试验结果的原因是阳离子有机絮凝剂分

5、子链上带有正电荷,具有一定的压缩胶体表面双电层和电荷中和等作用,但由于所带的正电荷数量有限,其主要作用仍是吸附和架桥。单独使用阳离子有机絮凝剂虽有一定的使胶体因电荷中和而脱稳的作用,但要达到较完全的脱稳仍需要更多的阳离子,而同时带入的较多有机絮凝剂分子也可能将胶体颗粒表面包裹,使胶体颗粒重新稳定而分散1。2.2 与无机混凝剂复合使用无机混凝剂选用聚合氯化铝(PAC),单独投加PAC时最佳投药量为300mg/L,产生絮凝体形体较大,结构松散,沉降缓慢,气浮后仍有一些微小的絮凝体悬浮于水体中,影响出水水质。复合使用药剂时,PAC投加时机为快搅开始时,其主要作用是压缩胶体颗粒表面双电层、电中和以及使

6、胶体凝聚形成细小矾花2; 有机絮凝剂的投加时机为快搅完毕慢搅开始时。试验观察到加入CPAM、PDA后,即刻便有形体较大,较密实的絮凝体产生,静置时絮凝体进一步长大,变密实,沉降速度明显加快,79min就可以基本沉降完成,而单独使用PAC的水样则需要20min左右才能达到这种程度。气浮时絮凝体上浮速度快,出水中看不到未能上浮的微小絮凝体。PD的加入没有使絮凝体的形体变大,沉降速率及气浮效果未得到提高。 图1图4是CPAM、PDA与PAC在不同复配比例条件下的处理效果。可以看出,投加CPAM或PDA可以明显改善处理效果,这是由于阳离子有机絮凝剂中阳离于对废水中的乳化油滴起到了电荷中和及压缩双电层的

7、作用,促使乳化油滴进一步破巩析出,而且有机絮凝剂有很长的分子链,能在经凝聚作用形成的胶体颗粒矾花间进行架桥,形成大而坚韧的絮凝体3,从而改善絮凝体性能。因此,这两类絮凝剂配合使用可以有效的提高CODcr和油的去除率,并且改善絮凝体性能,提高气浮分高效果。随着有机药剂投药量的增加,水样出现了不同程度的再稳现象。这是由于有机絮凝剂分子将废水中的胶体颗粒表面的活性点包裹,使架桥变得困难,导致处理效果变坏;也可能是由于阳离子数量增加使胶体表面带有了正电荷,从而使胶体重新稳定。试验得到废水达到排放标准时PAC与CPAM或 PDA复配最佳投量分别为:250mg/L PAC+2mg/L CPAM,200mg

8、/L PAC+4mg/L PDA。与单独使用PAC需要300mg/L相比,很少量阳离子有机絮凝剂的加入可以明显的减少无机絮凝剂的投加量,从而节省药剂费用。2.3 pH值对处理效果的影响图5为CPAM及PDA与PAC在最佳复配投量时处理效果随水样pH值的变化,可以看出PAC+CPAM和PAC+PDA的pH值适用范围分别为9.07.0,9.56.5。2.4 反应时间对处理效果的影响试验发现,搅拌时间对废水处理效果有一定的影响,尤其是反应时间即慢搅阶段的时间长短对处理效果产生了较大的影响。图6、图7是反应时间对处理效果的影响。药剂投量为最佳复配投量。可以看出要使有机絮凝剂更好地发挥作用,应保证有一定

9、的反应时间,试验得出反应时间在10min左右可取得较好的效果。2.5 阳离子絮凝剂投加时机对处理效果的影响试验选择两种时机投加阳离子有机絮凝剂:快搅开始时,即与PAC同时投加;快搅时先加入PAC,慢搅开始时再投加CPAM或PDA。试验结果见表2。 表2 有机药剂投加时机对处理效果的影响PAC投加量/(mgL-1)有机药剂投加时机有机药剂及其投加量/(mgL-1)出水(CODcr)/(mgL-1)出水油/(mgL-1)250快搅时加入CPAM,2859.8250慢搅时加入CPAM,2666.8200快搅时加入PDA,4727.5200慢搅时加入PDA,4656.6注:原水水质(CODcr)=11

10、40mg/L,(油)=216mg/L,pH=9.87。从出水水质来看,阳离子絮凝剂在慢搅时加入略好于快搅时加入。产生这种现象的原因是快搅时由于乳化油滴稳定性高,不易脱稳,絮凝剂中阳离子电中和的作用难以发挥;而在慢搅时加入,由于先前投加的PAC的作用,乳化油滴的稳定性大大下降,在这种情况下再加入阳离子有机絮凝剂可以更好的发挥阳离子的电中和作用,促使乳化油滴进一步脱稳。2.6 阳离子絮凝剂对气浮性能的影响表3为单独使用PAC和与CPAM或PDA复合使用处理废水时气浮效果及浮渣性质的比较。可以看出,CPAM或PDA的加入明显改善了气浮效果以及浮渣的性质,絮凝体上浮速度快,出水中看不到未能上浮的微小絮

11、凝体,浮渣体积仅为单独投加PAC的1/3左右,而且含水率低,易于进行脱水处理。表3 单独使用PAC和与CPAM或PDA复合使用处理时气浮效果及浮渣性质PAC投加量/(mgL-1)有机药剂及其投加量/(mgL-1)出水(CODcr)/(mgL-1)出水油/(mgL-1)浮渣体积/(mL)絮凝体上浮速度浮渣含水率/300676.742较慢98.62250CPAM,2666.818快97.32200PDA,4656.615快97.31注:原水水质(CODcr)=1140mg/L,(油)=216mg/L,pH=9.87。3 结论单独使用阳离子有机絮凝剂处理含油乳化废水效果不好。 当阳离子有机絮凝剂CP

12、AM或PDA与PAC复合使用时产生的絮凝体形体大且结构密实,易与水体分离,处理效果得到明显的改善,PAC的投加量得到明显的降低;PD与PAC复合使用时没有表现出助凝作用。CPAM或PDA与PAC复合使用时pH适用范围为:PAC+CPAM,9.07.0;PAC+PDA,9.56.5;较理想的反应时间为10min左右;阳离子絮凝剂宜在无机混凝剂投加一段时间后加入,这样可以充分发挥阳离子有机絮凝剂的作用。投加少量CPAM或PDA可以提高气浮效果,出水水质得到改善,浮渣体积大大减少,含水率降低,易于后续处理。氧化沟的水头损失计算与导流板偏置的作用 T型氧化沟为三沟交替工作式氧化沟系统,曝气沉砂池来水经

13、过配水井可根据需要进入各沟内。沟与沟相互连通,两侧沟设有启闭式可调堰,而剩余污泥一般从中沟排放。T型氧化沟系统运行灵活,曝气沉淀均在沟内交替进行,省去了污泥回流系统。通过合理地编排运行程序,还可以有效地实现脱氮功能。氧化沟采用的曝气转刷除具有充氧性能外,还需推动沟内混合液循环流动并能保证混合液 中的活性污泥不会发生沉淀,否则会降低混合液的浓度,影响处理效果。为保证混合液中的活性污泥处于悬浮状态,氧化沟最小平均断面流速必须在0.3m/s以上,并以此作为主要的设计参数计算氧化沟的沿程和局部水头损失,以确定曝气转刷的提升水头和水下推进器的型号及数量。在工程上,设计的T型氧化沟都具有脱氮功能,属延时曝

14、气,停留时间较长,造成氧化沟的总长度很大,平面布置上必然出现多处弯道。弯道的局部阻力相对于沿程阻力来说是相当大的,约占90%左右,但曝气转刷的推动力有限,应采取导流板减阻措施,其减阻效果可以通过水力计算说明。导流板的偏置,增强了减阻效果并更有效地防止固体沉淀,也减少了工程投资。 1 水头损失的计算污水经过预处理后进入氧化沟,由于氧化沟中的混合液沿沟渠循环流动,使沟中的循环流量远远大于进水流量。循环流量是由曝气转刷和水下推进器的推动所引起的,为了保持氧化沟中的固体呈悬浮状态而不致沉淀,沟内断面平均流速一般为0.30.5 m/s,沟底流速保证不低于0.1m/s。在实际运行过程中,如果水平流速达不到

15、设计值,可以通过调节出水堰高度或曝气转刷的垂直位置来改变曝气转刷的浸没深度和调节曝气转刷的转速等措施来调节。对于T型氧化沟来说,其沟底坡度和进出水位差很小,靠曝气转刷和水下推进器的推动,在沟内产生局部的水位差推动水流,其水位差用来克服沿程和局部水头损失。实际上,起主要推动作用的是曝气转刷,它推动氧化沟混合液产生提升水头h,其与转刷浸没深度(I)和线速 度(Vr)有如下关系:h=k(Im/Y)Vrn ()式中h曝气转刷的提升水头,mI转刷浸没深度,mY氧化沟水深,mVr转刷线速度,m/sk、m、n 试验常数另外,从混合推动力(PC)指标来看1,h=Fr/(gY)(2)式中h曝气转刷的提升水头,m

16、Fr 曝气转刷的混合推动力(表示沟内混合液达到0.3m/s的平均流速时,m曝气转刷所能推动的混合液体积,单位为m3/m2,一般在200250m3/m)由以上两个公式看出,曝气转刷的提升水头与氧化沟的水深成反比。在设计氧化沟时应根据曝气转刷的推动力确定水深,否则氧化沟水深太大会降低沟底流速,容易造成悬浮固体的沉淀。可以采取减少沟底过水断面的措施,提高沟底流速。若对转刷轴线的上下游断面列能量方程,则曝气转刷的提升水头等于混合液循环一周的水头损失。若有多个曝气转刷,则其提升水头为流至下一台转刷的水头损失(计算沿程损失时,钢筋混凝土沟壁粗糙系数n取0.013)。根据氧化沟的构造情况,每台转刷下游均安装

17、倾角为60的倾斜挡流板,使水流折向沟底, 推动沟底水流流动,保证沟底混合液充分混合。也可在上游安装垂直挡流板,这样局部阻力系数包括弯道阻力系数kb、垂直挡板阻力系数kv和倾斜挡板阻力系数ki。对于弯道,其阻力系数kb0.51.0;对于垂直和倾斜挡流板的阻力系数,有人得出如下关系1:kv5.41.5ki4.31.5式中d挡流板水下深度,mY氧化沟水深,m故氧化沟的总阻力系数K为:K=kf+kb+kv+ki 氧化沟总的水头损失为:h=KV2/(2g)根据氧化沟总的水头损失和所选用的转刷台数,可以校核转刷总提升水头能否克服总的水头损失。若不能则应增设转刷或采用水下推动器等辅助措施来保证达到混合推动要

18、求。 2 导流板的作用氧化沟直段上的沿程水头损失相对于弯道的局部水头损失来说非常小,一般认为仅为10%左 右。以某污水处理厂为例计算一个氧化沟的水头损失:【例】一氧化沟的总长度为300m,沟总宽20m,有效水深4m。hf=n2LV2/R4/3=0.01323000.32/(104/(10+4+4)4/3)=0.00157m若弯道的阻力系数取1.0,则弯道的局部损失为:hb=V2/(2g)=21.00.32/2g=0.00918m沿程水头损失占弯道局部水头损失的0.00157/0.00918100%17%,其中还包括了T型氧化沟连通孔的局部水头损失,其实仅占总的水头损失约为10%。因此,理想的弯

19、道设计 对于保证具有关键作用的渠中水平流速来说是非常重要的。为了减少摩阻,氧化沟在每个转 弯处都设一个或多个导流板,可以防止或推迟混合液与壁面的分离,减小旋涡区和二次流的产生,达到降低弯道阻力系数的目的。设置导流板后,其阻力系数按下式计算:1/fc=1/fc1+1/fc2+1/fc3+.+1/fcn式中fc1fcn在由n-1个导流板分开的转弯处每一渠道的局部阻力系数这种计算类似于电学上的并联电路。下面再用一例子分析用导流板后局部阻力系数的变化情况:【例】有一氧化沟,其弯道处的阻力系数(fC)等于10。当该渠道被二个导流板分开时,所形成的各支渠的局部阻力系数为fC115,fC207,fC305,

20、那么,由于弯道分割渠道,其阻力系数fC为:1/fc=1/fc1+1/fc2+1/fc3=1/1.5+1/0.7+1/0.5fc=0.224由此看出,这个转弯处的水头损失减少到没有分割前转弯处损失的24.4%,减阻效果非常明显。导流板通常是薄壁结构,因为薄壁导流板的阻力和摩阻通常是忽略不计的,否则就要考虑由于它对水流的阻力所产生的额外损失。但弯道的阻力系数总是较大,这主要是因为它的曲率半径较小。若导流板偏置于弯道处,即它的圆心不在氧化沟渠道的纵向中心线上,水流从大断面进从小断面出,这样可以增加氧化沟弯道出口的水流流速,加强其紊流程度和冲刷能力,防止固体在隔墙背流处沉淀。实际工程中,一般只设一道导流板,再增加导流板会增加工程费用,导流板偏置能够减少弯道隔墙背流处活性污泥等固体沉淀,从而减少导流板的数量,降低工程投资。山东省某污水处理厂采用偏置导流板,其在试运行过程中,发现T型氧化沟的直段全部产生污泥沉淀,但弯道处没有产生,从而说明了偏置的导流板具有较强的减阻效果和防沉作用。 3 结语 沟中断面平均流速的动力主要来自于曝气转刷和水下推进器,通过提升水头和水头损失的计算,可以保证断面平均流速达到设计值,保证混合和推流达到设计要求,保持氧化沟中固体呈悬浮状态而不致沉淀。弯道局部阻力在整个氧化沟中比较大,设置导流板可降低弯道阻力,导流板的偏置可减少导流板的数量并防止弯道隔墙背流处的固体沉淀。

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2