ImageVerifierCode 换一换
格式:DOC , 页数:97 ,大小:5.41MB ,
资源ID:1891761      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-1891761.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(川大版高数第三册答案.doc)为本站会员(聆听****声音)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

川大版高数第三册答案.doc

1、第一章 行列式 1.3 证明:.因为:对换改变排列的奇偶性,即一次变换后,奇排列改变为偶排列,偶排列改变为奇排列当n2时,将所有偶排列变为奇排列,将所有奇排列变为偶排列 因为两个数列依然相等,即所有的情况不变。偶排列与奇排列各占一半。4 (1)不是行列式的项 是行列式的项 因为它的列排排列逆序列=(4321)=3+2+0+0=5为奇数,应带负号(2)不是行列式的项 = 因为它的列排排列逆序列(34512)=2+2+2+0+0=6 为偶数应带正号。 5 解: 利用为正负数来做,一共六项,为正,则带正号,为负则带负号来做。6 解:(1)因为它是左下三角形=(2)=+=0(3)=32(4)=7.证明

2、:将行列式转化为若 零元多于个时,行列式可变为故可知行列式为0.8.(1)5=55习题一13 (1)根据“定义法”(2)根据“降阶法”(3)注:根据范达蒙行列式原式= -1=(4)=14 (1)证明:(2)证明: (3)(4)“递推法”15.(1) =+=(ab+1)(cd+1)-a(-d)=(ab+1)(cd+1)+ad(2) =(4-6) (-1-15)=32(3) =+=-a(c-d) -a(d-b) -a(d-c) =abd= abd(c-b)(d-b)(c-d)(4) = =( =16. 范达 行列式V()=(1) 因为为常数。所以p(x)是n-1次的多项式(2) 令p(x)=0.得

3、x=.x=.即p(x)的根为第二章 矩阵代数4. 计算下列矩阵乘积(1) =(2) =(3) . (1,-1,2)=(1*2+(-1)*1+2*4,1*1+(-1)*1+2*2,1*0+(-1)*3+2*1=(9,4,1)(4) (x,y,1) =(x,y,1)=(5)=5. 设A=,B=,求=6.(1) A=n=1时 A=n=2时 =n=3时 =A=假设 (1当n=1时,= (2假设当n2时(n为自然数)成立,令n=k,则=成立; 当n=k+1时 =A=成立综上当n微自然数时当n=1时,当n=2时,当n=3时,假设=当n=1时 =假设n=k+1时=成立综上当n为自然数时,当A=2时 n=3时

4、 n=4时 n=5时 假设n时成立 当n=3时 假设n=k时成立 当n=k+1时 =整理得成立所以综上 =7、已知B=证明E,当n为偶数; B,当n为奇数证明:=E,当n为偶数; B,当n为奇数8、证明两个n阶上三角形矩阵的乘积仍为一个上三角形矩阵。证明:设两个n阶上三角形矩阵为A,B,且A= B=根据矩阵乘法,有AB=则可知AB为上三角形矩阵同理,可得BA也为上三角形矩阵。9、若AB=BA,AC=CA,证明:A、B、C为同阶矩阵,且A(B+C)=(B+C)A,A(BC)=BCA.证:设A=,B=,C=由题知AB、BA有意义,则可知必有m=s,又由于AB=BA,且AB为mn阶矩阵,则可知m=n

5、,所以A、B均为n阶矩阵。同理可知A、C均为n阶矩阵,故可得A、B、C为同阶矩阵 10、已知n阶矩阵A和B满足等式AB=BA,证明:(1)(2)(3) 11、 12、 证明 13、 14、 15、 当n=1时,当n=2时,当n=3时,假设=当n=1时 =假设n=k+1时=成立综上当n为自然数时,当A=2时 n=3时 n=4时 n=5时 假设n时成立 当n=3时 假设n=k时成立 当n=k+1时 =整理得成立所以综上 =16、(1)解:设 由得:得(2)设由,得:得:(3)设由方程组,得:得(4)设得得:(5)设得得19、(1)解:方程组的解为:(2)方程组的解为:(3)方程组的解为:(4)有且

6、仅有或时,无意义;则其他情况方程组的解为:(4)(5)由得(6)24.证:A为对称矩阵 A=A AA=AA=E AA(A) =E(A) A=(A) A为可逆对称矩阵 (A) =(A) A=(A) 可逆对称矩阵的逆矩阵也是对称矩阵。25.证:(1)(A)=(AA)=AA A为n阶对称矩阵 A=A (A)=A A为对称矩阵 (B)=(BB)=B B B是n阶反对称矩阵 B=-B (B)=(BB)=BB B是n阶反对称矩阵 B=-B (B )=(-B)(-B)=B B是对称矩阵 (AB-BA) =(AB)-(BA) =BA-AB =-BA-A (-B) =AB-BA AB-BA为对称矩阵。(2)必要

7、性:AB为反对称矩阵 (AB)=-AB 又(AB)=BA=-BA AB=BA 充分性: AB=BA (AB)=BA=-BA AB为反对称矩阵 综上所述:AB是反对称矩阵的充分必要条件是AB=BA。26.解:设矩阵X为x= 则= Ax=o=0 即=0 对任意n1矩阵都成立 A=027.证: A为正交矩阵 =A A= = = 又正交矩阵为可逆矩阵 A=A : A= = = A = = = = A28.解: = = 时 依次用V左乘和用U右乘消去得从而得证29.解:(1)判断X可逆即: 因A、C可逆, 则即则X可逆。 (2)设则 由 = =E 30.证明: 31.解:(1) 原式= (2) (3)

8、第三章 线性方程组1. 证:假设线性相关, 则不会为0,使得 整理得: 又由,故 由于 故由克莱默法则知: 故结论正确。2. 解: 得: 3、不一定。原式:故仅可得到线性无关将每个向量任意拆分得到的新向量显然不一定仍然线性相关例如向量成比例或含有零向量例:或任一一个为零向量4、不正确 使两等式成立的两组系数一般来说是不相等的,所以不可以做那样的公式提取即5、提示:含有零向量就一定线性相关 极大线性相关组中每一向量都无法用其他组中向量给出,因此可用一极大线性无关组加零向量构成向量组6.证:假设线性相关, 由题意知,必存在一组使得 7.证:设 由于 6、证明:假设线性相关,则,线性相关(部分相关则

9、全体相关)所以存在m+1个不完全为0的数满足本来线性相关,故可为0,可不为0(1) 则无法用线性表出(2) 而线性相关,根据定义,至少有一个向量可用其他m-1个向量表出,我们不妨设则这样得到了的另一种表出式,即表出不唯一综上,假设成立条件下得到的结论与“可用唯一表出”矛盾故假设不成立,线性无关7、将A表示为,B表示为若线性无关,则必有同理可证AP117 T8解:(1)由此r=3解:(2)由此r=2解:(3)由此r=3解:(4)由此r=2解:(5)由此r=3解:(6)由此r=5T9 解(1):设向量组线性相关,则由,得: -由,得: = ,= 代入式,得:线性无关由此r=410(1)证:由线性相

10、关则必有一组不全为0的数使得既有:从中每一个向量中去掉第,就相当于在上述方程组中去掉S个方程剩下的方程仍成立既有不全为零的数使得:从而:线性相关显然当线性无关时由上面的证明可知肯定线性无关(2)由(1)的证明很显然得到结论11、证明:把 作为矩阵A行向量写成矩阵A即:只须证A的行量组线性无关即可即证:显然A中有一个阶子式而A内的所有阶子式为0,因为A的行数故有,从而结论成立12、证:先证当可由线性表示出时,的秩小于等于的秩不妨设:的极大无关组为;的极大无关组为只须证:即可假设那么由条件可知:可由线性表出,即存在一矩阵,使得在上式两端同右乘一列向量,即得:只要找到一组不全为0的数,使得:成立就能

11、说明线性相关,与线性无关矛盾事实上:由于,所以上述方程组一定有非0解故结论成立,同理可证,从而有13证:(1)时,若,则说明,向量组B与A可相互线性表示,又由A线性无关,其秩所以,从而B线性无关反之:若B线性无关,考察代入并整理得:令由上式可得:由线性无关,所以若,则有非0角从而由故考查:即将代入上式得:由于线性无关,也线性无关故而方程组只有0解而线性无关只有0解,故结论成立14.记住一下常用矩阵秩的性质(1)(2)(3)若可逆,则(4)证法一:由上述性质(4)条,而所以证法二:设,(A,B同型,所以列则显然的列向量组可由与的极大无关组线性表出若设分别为与的极无关组那么的列向量组可由线性表出,

12、所以14、(第二种)证明:设有向量组A,的行向量组为:,其极大线性无关组为:的行向量组为:其极大线性无关组为:的行向量组记为:其中, 则, 有又即有习题三15、解:对增广矩阵进行初等变换 则无解解:对方程组的增广矩阵进行初等变换 则无解解:对方程组的增广矩阵进行初等变换(课本第页题目出错,应该为B= 则有唯一解。即唯一解为(3,2,1,)。由方程组 解得:(4)、解:对方程组的增广矩阵进行初等变换B= 则6只方程组有无穷多解。先求它的一个特解,与阶梯形矩阵对应的方程组为令上式中的,解得。于是得到特解:导出组的方程为:令解得:.令解得:令。解得:可求得导出组的基础解系:, 于是方程组的通解为:其

13、中为任意常数16.(1)欲使方程有解,须使=其中A= B=对B进行初等行变换,过程如下:B=交换行 -行+行-行+行 行+行 显然,=时,=2此时 取(3,4)故()同样地,欲使该方程有解,须使=其中=对进行初等行变换,得=交换行 -行+行 -行+行交换行行+行时此时=,故方程有解。且解为-时由于,故方程无解。且时,=,方程有唯一解,且故(此处只考虑及-两种特殊情形,原因在于,当或-时会使得矩阵第二、三行的首先为零,从而引起情况的出现)综上,=1时,方程有无穷多解 =-时,方程无解且-时17.证明:记系数矩阵为,增广矩阵为。另外:=假设,可设的前行线性无关且第(r+1)行可用前行线性表出,那么

14、对于第(r+1)行中的每一个值都有。但与相比多了一列,有可能使得(当然,这种关系也有可能满足)。但当这种关系部满足时,故,同理。综上:由于=,故=,方程有解。18.解:首先明确在平面直角坐标系中,直线的方程应为x+By=C.那么用矩阵表示,即为若将.B都看做自变量,将看做系数,那么,增广矩阵即为=由于列向量线向相关,故=故=0若为n(n3)点共线,则增广矩阵B=该矩阵中第个列向量可用前两个线向表出,故。考虑直线的特殊情形:当该直线经过原点(,)时,=;其余情形下,=故,点共线的充要条件为的秩即的秩19.解:对方程组的增广矩阵施行初等行变换B=初等行变换=方程组有解的充要条件为= 4 ,则需=解

15、出矩阵对应的方程组得:令=得到方程组的特解=(,)导出组的方程为令=则得导出组的基础解系为=(1,1,1,1,1)则方程组通解为=(,)+k(1,1,1,1,1)20.证明(1)方程组的系数矩阵=系数a,b,c,d,e中有两个等于-1即a+1,b+1,c+1,d+1,e+1中有两个等于0则=4,因此方程组必有非零解(2)=已知任何系数都不等于-1,且=1则=0得=4,因此方程组必有非零解.21.(1)方程组的系数矩阵通过初等行变换化简=矩阵的秩=24,基础解系由2个线性无关的解向量构成,矩阵对应的方程组令 代入解得 对应的解的向量为令 代入解得 对应的解的向量为,是方程组的一个基础解系则方程组

16、通解为.其中. 为任意的实数(2)方程组的系数矩阵矩阵的秩=24,基础解系由2个线性无关的解构成对应的方程组为令 可解得 对应的解向量为 令 可解得 对应的解向量为是方程组的一个基础解系方程组的通解为,其中. 为任意的实数(3)方程组的系数矩阵=4, 基础解系由2个线性无关的解向量构成写出阶梯形对应的方程组令解出对应的解向量为令解出对应的解向量为是方程组的一个基础解系方程组的通解为,其中. 为任意的实数(4)方程组的系数矩阵=3,基础解系应由2个线性无关的解构成阶梯矩阵对应的方程组为令 解得对应的解向量为令 解得对应的解向量为构成方程组的一个基础解系方程组的通解为,其中. 为任意的实数22.(

17、1)假设线性相关则存在一组不全为零的一组数使成立若则则是方程的解,与题设矛盾21-24页第三章 线性方程习题三 P121 23-26题27.解:由A2A得A(AE)0,再由第26题解得rArAEn又rAr(EA)rAEA rEn 即rArAEnrArAEn28.证:A2E(AE)(AE)0r(AE)r(AE)nr(AE) (EA) r2Enr(AE)r(EA) r(AE)r(AE) r(AE)r(AE)n29.证: (1) 当rAn时|A|0由AA*|A|E知|AA*|AE|A|A*|A|n,|A*|A|n10故A*可 rA*n当rAn1时,|A|0 且存在一个(n1)阶的非零子式从而rA*1

18、AA*|A|E0rArA*n rA*nrA1rA*1当rAn时知A的所有(n1)阶子式为零A*0(2)当rAn时(1)中已证 当rAn1时rA*1|A|0|A*|A|n10成立又当rAn1时,由(1)中知|A|0|A*|A|n1亦成立。第四章1、(1)是;(2)、否,因为题中的非零向量可以由不平行于该非零向量的向量通过向量的加法表示出来,所以该非零向量必须也包含在题中的全体向量中才能构成实线性空间。(3)是(4)是(5)否,k00的解为k0或0,k与不具有任意性不满足线性空间的定义。2、(1)能 (2)不能 (1)中由x1x2xn0x1x2xn1xn得任意一个向量都可以用其余的向量线性表示 而

19、(2)中x1x2xn1 x1x2xn11xn 不满足(1)中的线性关系,不能构成Rn的子空间3、当平面不过原点时,否 当平面过原点时,是 解析:当平面过原点时,所有的起点位于原点,终点位于给定平面上的所有向量在一个平面上,构成了一个二维的向量空间,(比如xoy平面上所有的向量),而当给定平面不过原点时,所有的向量构成一个体(体分布),是次三维空间中所有向量的一部分,不是闭合的,不能构成子空间。第四章P1394.解(1)假设存在,使得+=0 要使上式对任意的x都成立 则=0 所以,线性无关 ,为极大线性无关组 所以,它们的积为2 (2)因为,=2-1 所以,1线性相关 假设存在,使得+=0则=0

20、所以,1线性无关所以,1为,1的一个极大线性无关组所以,它们的秩为2(3)假设存在一组数使得对任意的x都成立所以,线性无关它们的秩为n5证明:因为, =由上式可得,约.6, 证明:假设存在使得 即 即 7、由于(3) () 与均可由与线性表示 它们分别生产的子空间相同即V1V2 8、解:(1)因为是对称的,.维数只取决于对角线和上半(或下半)部分的元素为维(2)由于反称矩阵,维数只取决于上半(或下半)部分元素为维。(3)由于前两个分量线性相关 维数为n1 9、证明,组成的一个基,只需证这几个向量在同一个基下的坐标作为行或列的n阶行列式不为0 对于(1)即证0 对于(2)即证或 求在这个基下的坐标。 (1)设(x1 x2 x3 x4 ) (1 2 1 1)x1 (1,1,1,1)x2(1,1,-1,-1)x3(1,-1,1,1,) x4 (1,-1,-1,1) x1 x2 x3 x4 坐标为,)(2)设(x1 x2 x3 x4 ) (1 2 1 1)x1 (1,1,0,1)x2(2,1,3,1)x3(1,1,0,0,) x4(0,1,-1, -1)。 x12 x21 x3-3 x42坐标为(2,1,-3,2)10(1)1,x,x,x,x4 1,1x,1xx,1xxx,11xxxx4旧基底到新基底的过渡矩阵M (2)令:12x3x4x5x4

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2