ImageVerifierCode 换一换
格式:DOCX , 页数:24 ,大小:29.97KB ,
资源ID:1903111      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-1903111.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(坝内压力钢管设计大纲范本.docx)为本站会员(b****1)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

坝内压力钢管设计大纲范本.docx

1、坝内压力钢管设计大纲范本FJD34160 FJD水利水电工程 技术设计阶段坝内压力钢管设计大纲范本水利水电勘测设计标准化信息网 1998年3月 水电站技术设计阶段坝内压力钢管设计大纲 主 编 单 位: 主编单位总工程师: 参 编 单 位: 主 要 编 写 人 员: 软 件 开 发 单 位: 软 件 编 写 人 员: 勘测设计研究院 年 月目 次1. 引 言 42. 设计依据文件和规范 43. 设计基本资料 44. 布置 85. 水力计算 96. 结构计算 107. 附属设备的设计 138. 构造要求 149. 原型观测 1510. 专题研究 1511. 工程量计算 1512. 应提供的设计成果

2、 151 引言工程概况: 本枢纽大坝坝型为,最大坝高 m。采用式厂房布置,厂房内设置台 MW式机组,引水管道采用单机单管引水,共条管道,布置于至坝段内。 提示:可根据工程具体情况,增加相应内容。2 设计依据文件和规范2.1 有关本工程的文件 (1)初步设计报告及附图; (2)初步设计报告审批文件; (3)设计任务书; (4)有关的专题报告和试验报告。 2.2 主要设计规范 (1)SDJ 12-78 水利水电枢纽工程等级划分及设计标准(山区、丘 陵区部分)(试行)及补充规定; (2)SD 144-85 水电站压力钢管设计规范(试行); (3)SDJ 20-78 水工钢筋混凝土结构设计规范(试行)

3、; (4)SDJ 10-78 水工建筑物抗震设计规范(试行); (5)SDJ 21-78 混凝土重力坝设计规范(试行)及补充规定; (6)DL 501793 压力钢管制造安装及验收规范; (7)GB 70088 碳素结构钢; (8)GB 37488 普通碳素结构钢和低合金结构钢热轧厚钢板和钢带; (9)GB 665486 压力容器用碳素钢和低合金钢厚钢板; (10)GB 511785 碳钢焊条; (11)GB 511885 低合金焊条; (12)GB 130077 焊接用钢丝; (13)GB 529385 碳素钢埋弧焊用焊剂。3 设计基本资料(注:有些资料需在设计过程中,由相关专业陆续提供.)

4、3.1 工程等别与建筑物级别 工程等别:等; 建筑物级别: 级。 3.2 地震烈度 (1)基本地震烈度: 度; (2)设计地震烈度: 度。 3.3 洪水标准 (1)设计情况洪水重现期, Ts=年; (2)校核情况洪水重现期, Tx=年。 3.4 水位和流量 表1 水位和流量情 况指 标单位渲泄校核洪水渲泄设计洪水泄一台机最大流量泄全部机最大流量正常蓄水位死水位流量(Q)m3/s库水位m尾水位m 注:*表示需要提供资料的项目3.5 气温与水温 (1)月平均气温: 表2 月平均气温 单位: 月 份1 2 3 4 5 6 7 8 9 10 11 12 年 平均气温 (2)绝对最高气温: ; 绝对最低

5、气温: ; (3)钢管内最低水温: ; (4)月平均水温: 表3月平均水温 单位:月 份1 2 3 4 5 6 7 8 9 10 11 12 年 平均水温3.6 机组 (1)水轮机型号:; (2)水轮机额定出力: MW; 最大出力: MW; (3)水头与流量: 表4 水头与流量 名 称单 位设 计最 大最 小水 头,m引用流量m3/s (4)安装高程:m; (5)蜗壳进口截面位置:距机组中心线m; 直 径: m; 管壁厚度: mm; 使用钢材: 。 (6) 机组台数: 台; 机组间距: m。 (7)引水道末端(即蜗壳进口)水锤压力:表5 水 锤 压 力 名 称单位相应于正常蓄水位时最大压力上升

6、相应于死水位时最大压力下降水锤压力MPa提示:如有必要时,也可计算相应于设计洪水位时的最大压力上升。 3.7 闸门 (1) 闸门 工作闸门孔宽:m; 工作闸门孔高: m; 工作闸门门槽宽: m; 工作闸门门槽深: m; 工作闸门门槽中心线桩号: m; 闸门槽二期混凝土及埋件布置图。 (2) 旁通管 旁通管(或充水阀)直径:m。 3.8 大坝及厂房 (1)设置引水管坝段的宽度: m; (2)坝体横剖面及纵剖面图; (3)钢管各计算剖面管中心点的坝体应力: 表6 管中心点的坝体应力工 况主 应 力1 (MPa)2 (MPa)方位角( )校核洪水位正常蓄水位正常蓄水位遇地震死水位遇地震库空 注:方位

7、角为 1与垂直线的夹角,以逆时针方向为正提示:也可以给出该点水平与垂直向正应力x和y,以及剪应力xy。 (4)厂房布置图; 提示:主要是厂房横剖面图及蜗壳层平面图。 (5)厂房与大坝接缝面处理方案:;提示:分析取消伸缩节可能性时,需考虑厂坝接缝面处理方案,例如是否灌浆,灌浆高程;是否设键槽,插筋等。 (6)蜗壳排水及进人孔布置:。 3.9 水力计算参数 (1)混凝土和钢管的糙率 混凝土糙率:;钢管糙率: 。 (2)局部水头损失系数 拦污栅: ;进水口: ;闸门槽: ;渐变段: ;弯管段: ;锥管段: 。 3.10 材料特性及安全系数 3.10.1 钢板 (1)钢材品种; (2)强度: 表7 钢

8、 板 强 度 指 标 钢 号钢板厚度mm屈服强度MPa极限强度MPa (3)允许应力: 表8 钢板允许应力指标 单位:MPa 钢 号板厚荷截组合埋 管明 管mm直管弯、锥管按明管校核直管弯、锥管基本特殊基本特殊 (4)焊缝系数:; (5)弹性模量: MPa; 泊松比:; (6)线膨胀系数:; (7)钢管抗外压失稳安全系数:。 3.10.2 混凝土 (1)混凝土标号: ; (2)混凝土容重: kN/m3; (3)混凝土弹性模量: MPa; 泊桑比: ; (4)混凝土设计强度: 表9 混凝土设计强度 单位:MPa 混凝土标号抗 拉抗 裂 (5)强度安全系数: 表10 安全系数 结构受力特征荷载组合

9、基本特殊混 凝 土按抗拉强度计算的受压、拉、弯构件钢筋混凝土轴心受拉、受弯、偏心受拉构件 (6)钢筋混凝土轴心受拉、小偏心受拉构件抗裂安全系数:; (7)钢筋混凝土结构构件允许最大裂缝宽度:水上mm;水下水位变动区mm。 3.10.3 钢筋 (1)钢筋品种: ; (2)钢筋设计强度: 表11 钢筋设计强度 钢 筋 种 类直 径设 计 强 度 MPamm受拉钢筋受压钢筋 (3)弹性模量:MPa; 泊松比: 。 (4)安全系数同钢筋混凝土结构强度的安全系数。 3.11 材料及供货条件 提示:应对钢材、焊材等主要材料货源条件进行调查,例如可获得的适用钢种、产品规格(宽、厚、长度)、技术标准、可否定尺

10、供货等,以便正确选择钢材品种及数据。3.12 场内外运输条件 提示:应对场内外采用的运输工具、道路状况、转运站和现场垂直运输工具等进行调查,掌握对运输尺寸和重量的限制,以限定管段长度和订货材料规格。4 布置 本阶段应根据进一步获得的资料及相关建筑物设计变更情况,对初步设计的布置方案进行复核与优化。 4.1 引水管管径 应假设几种管径,通过技术经济分析确定最优管径。 提示:(1)由于坝内管道长度较短,一般采用一种管径, 只在与蜗壳相接处改变一次管径。 (2)通常坝内钢管管径不宜大于坝段宽的1/3,若比值过大(例如超过1/2)时,需作专门研究。4.2 管线布置 应比较23条管线布置方案(例如无上弯

11、段的深埋管、平行下游坝面的浅埋管、坝后背管等),以选定最优管线布置方案。 提示:(1)通常坝内管采用单管单机引水方式,不设岔管.如由于地形等条件限制,需设置岔管时,必需经过论证。 (2)坝后背管混凝土厚度宜为1 1.5 m左右,坝内埋管管顶混凝土厚度一般宜大于一倍管径,预留钢管槽时,两侧二期混凝土厚宜在1 m左右。4.3 渐变段 确定渐变段长度和截面变化规律。 提示: (1)渐变段长度宜为引水管直径的11.5倍,收缩角宜小于10以减小水头损失。 (2)为方便施工,渐变段高度、宽度及圆角半径通常可按线性变化。4.4 通气管 确定通气管尺寸、面积;最大通气量;最大风速。 通气管布置:通气管上部和下

12、部孔口高程 、位置。 提示:为避免钢管出现过大负压及气蚀现象,通气管布置应遵循下述原则: (1)通气管面积宜适当取大些,一般为引水管截面积的5%8%; (2)通气管下部孔口应尽量靠近事故闸门,但应离开门楣二期混凝土; (3)通气管上部上部孔口不可设在启闭机室内,孔口高程应高于最高库水位,并应注意孔口的保护; (4)通气管上部孔口设在下游坝面时,应注意防止通气管喷水,或采取相应措施,以免危及人身及坝后建筑物或电气设备的安全。4.5 弯管段 确定上弯段与下弯段转弯半径与转角、起点与终点。 提示:(1)弯管水头损失占总水头损失的比例较大,且施工困难, 应比较取消上弯段的深埋管布置的合理性。弯管段弯曲

13、半径一般取3倍管径左右。 (2)上弯管布置时尤应注意满足管顶压力不小于0.02 MPa的要求。 (3)一般不宜在平面与立面内同时转弯,当必需在平面与立面内同时转弯时,宜采用空间转角,以减少水头损失。4.6 锥管段 提示:(1) 锥管段位置应结合经济分析及钢管排水的要求考虑,一般设在下平段或斜直段末端。 (2)为减少水头损失,锥角宜小于10。4.7 伸缩节 应分析取消伸缩节的可能性。 提示:(1)当坝基岩石变形模量高时,应研究取消伸缩节的可能性,以节约投资、方便施工和检修。 (2)研究取消伸缩节的可能性时,除分析坝与厂房在水压力和自重等荷载下的变形外,必须分析温度变化引起的变形,以确定取消伸缩节

14、的可能性,及必须采取的结构和施工措施。4.8 钢管段长度 应根据内水压力和管径等条件分析钢管段的长度。 提示:一般情况下,渐变段倾向不设钢管;对于内水压和管径较小的场合,也可分析进一步缩短钢管段长度的可能性。5 水力计算5.1 水头损失 提示:(1)计算水头损失时,水头损失系数可参照SD 303-88附录二及水电站坝内埋管设计手册及图集中推荐的公式计算。注意拦污栅水头损失应计入拦污栅结构梁系的影响(可仿照栅片水头损失系数公式计算);弯头损失不宜用维斯巴赫公式,宜按水电站坝内埋管设计手册及图集中大直径圆管的公式计算。 (2)应作出水头损失与引用流量关系曲线。 5.2 水锤及压力线 5.2.1 水

15、锤计算 5.2.1.1 计算各种工况下钢管末端(即蜗壳进口处)水锤压力值, 假设水锤压力沿管道轴线线性变化,至进水口处变为零。 提示:通常应由水力机械专业提供。5.2.1.2 应计算下述工况的水锤压力: (1)正常工作情况最高压力 相应于水库正常蓄水位, 由引水管供水的机组突然丢弃全部负荷时可能出现的最高压力。 提示:(1)通常应核算机组设计水头和最大水头两种工况下突然丢弃全部负荷时的水锤压力 (2)注意最高水头时导叶关闭时间比机组设计水头时要短。 (2)最低压力 相应于水库死水位, 由引水管供水的机组由空转增荷至满发时可能出现的最大压力降低。 提示:一般不考虑校核或设计洪水位时机组丢弃全部负

16、荷的可能性。5.2.2 压力线 应考虑流速水头、水头损失和水锤压力后作出引水管的压力线. 通常成果应包括: (1)正常工作情况最高压力线; (2)特殊工作情况最高压力线; (3)最低压力线。 提示:其中“特殊工作情况”一般相应于水库为校核洪水位,但不计水锤的情况.6 结构计算6.1 荷载及其组合6.1.1 荷载(1)内水压力 提示:(1)正常工作情况,最高内水压力为:水库正常蓄水位时的静水压力加上机组突然丢弃全部负荷时的水锤压力升高。 (2)特殊工作情况,最高内水压力在SD 14485规范中规定为水库最高发电水位时静水压力加上机组突然丢弃全部负荷时的水锤压力升高。由于“最高发电水位”定义不够明

17、确,各工程设计中采用值有所不同。有的工程取水库校核洪水位时的静水压力加水锤压力升高;但也有许多工程考虑到校核洪水与机组突然丢弃全部负荷均为稀遇概率事件,同时发生的概率更是稀少,故只取校核洪水位时的静水压力,而不迭加水锤压力升高。 (3)工程设计中一般不考虑设计洪水工况,因为,若不迭加水锤压力,作为基本荷载时,通常都小于正常蓄水位加水锤时的内水压力;若迭加上水锤压力,作为特殊荷载时,又小于校核洪水位加水锤时的内水压力,两者都不是控制工况。而且,后者也是两种稀遇概率事件的乘积,发生的概率更稀少。 (2)钢管外侧渗流水压力 提示:通常按由钢管始端沿钢管外壁的绕渗来计算。假定渗流水压力沿管轴线直线变化

18、,钢管首端处为H,厂坝分缝处为零。H为水库正常蓄水位至钢管首端的静水压力,为折减系数,可根据采用的防渗、排水、灌浆等措施取1.00.5。另外,考虑意外及灌浆等工况,规定最小渗流压力不小于0.2 MPa。(3)坝体应力 (4)地震力 提示:通常仅计及地震引起的坝体应力,而忽略地震引起的钢管惯性力及管内水体的激荡力。 (5)施工期流态混凝土压力和接触灌浆压力 提示:通常采用设内支撑及控制混凝土浇筑速度和灌浆压力的措施,使它们不成为钢管及配筋的控制因素。(6)温度荷载 提示:原型观测资料都反映温度变化是引起钢管和钢筋应力变化的主要因素,但由于温度应力尤其是施工期温度应力计算的复杂性、又缺乏相应的控制

19、指标等,目前设计中如何考虑温度荷载还无统一规定。通常,设计钢管时,在缝隙中考虑温度影响。而在配筋计算中,有的不考虑温度影响;有的不计温度应力,但将钢筋容许应力降低20 MPa 40 MPa;也有入运行期管内外温度差的影响。但无论采取何种方法,都必须采取适当的温控措施。(7)钢管结构自重及管内水重通常忽略不计。 6.1.2 荷载组合 表12 引水管设计荷载及其组合荷 载组 合基 本 荷 载特 殊 荷 载正常工作情况最高内水压力正常蓄水位时管道中心点坝体应力正常蓄水位时管道中心静水压力相应于正常蓄水位时钢管外侧渗透水压力 校核洪水位时内水压力校核洪水位时管道中心点坝体应力正常蓄水位遇地震时管道中心

20、点坝体应力1234567基本组合基本组合特殊组合特殊组合提示:通常工程设计中必须考虑上述几种荷载。根据工程规模和具体条件也可增加其它荷载组合,如温度荷载、设计洪水位加水锤压力升高等。6.1.3 钢管与混凝土间的缝隙 (1)计算混凝土分担的内压、混凝土裂缝深度、混凝土应力和配筋量时,应取钢管与混凝土间缝隙的最小值。 提示:可假定缝隙值为零或0.2 mm0.3 mm,后者为一般水泥灌浆无法灌入的缝隙宽度。 (2)计算钢管壁厚和抗外压失稳时,应取钢管与混凝土间缝隙的最大值。 提示:(1)通常可用下式计算最大缝隙值: =1 +2 +3 式中:1钢管温降形成的缝隙, 1=(1+)tro ,其中 为混凝土

21、泊松比; 为混凝土膨胀系数; ro为钢管内半径;t为钢管最大温降值,可取钢管接缝灌浆时月平均气温(或者在不进行接缝灌浆时取钢管回填混凝土时月平均气温)与钢管内运行期最低水温之差,工程中一般取t=1020 。 2钢管初始缝隙值。当进行水泥接缝灌浆时,可取 2=0.2 mm0.3 mm;当不进行接缝灌浆时,应根据是否采用膨胀水泥,在斜段还是平段,混凝土浇筑方法等具体情况来确定。 3考虑混凝土徐变的缝隙值,在无更精确的计算方法前,可取3=Pro/Eo,其中P为钢管承受的静水压力,Eo为混凝土弹性模量。 (2)混凝土干缩与冷缩缝隙通常可忽略不计。 (3)工程中采用的最大缝隙值通常在 (1.54)10-

22、4ro范围内。6.2 结构计算原则及基本假定 (1)在内水压作用下作为平面变形问题,按多层圆筒进行计算; 提示:一般工程不必作有限元分析,只有当内水压较高、管径较大、混凝土较薄时才需考虑作有限元分析。(2)内水压力作用下应区别情况考虑钢管与混凝土联合承载: 1)当外围混凝土最小厚度大于钢管直径,可由钢管、钢筋与混凝土共同承担内水压力。 2)当外围混凝土最小厚度小于钢管半径,宜由钢管单独承载,但允许应力取坝内埋管 相应的值。 3)当外围混凝土最小厚度在钢管半径与直径之间,是否考虑联合承载应经论证。 4)设有弹性垫层的钢管,可按明管设计,允许应力采用明钢管的值,并稍予提高,但不得超过1.1倍。 (

23、3)坝体应力作用下按有限宽板开孔计算孔口应力; 提示:当坝体横缝进行接缝灌浆时,可按无限域中开孔进行计算。(4)钢管不参与承担坝体应力荷载; (5)钢管应按明管单独承担内水压进行校核,容许应力取0 9倍屈服强度; (6)钢管承受内压力和外压力计算时,均应考虑钢管与混凝土之间可能存在的缝隙值; (7)按拉应力图形面积配筋时,应扣除混凝土分担的部分拉应力。 6.3 结构计算 6.3.1 钢管承受内压计算方法 (1)确定混凝土开裂深度 假设钢管厚度和配筋,按SD 14485附录(三)公式确定混凝土开裂深度。 提示:(1)钢管与混凝土间缝隙取最小值。 (2)由于未考虑温度应力等因素,建议确定混凝土允许

24、拉应力时,取混凝土结构按抗拉强度计算时的安全系数。 (2)核算钢管等的应力 根据混凝土开裂深度,分别选用SD 14485附录(三)中相应公式计算钢管、钢筋和混凝土应力,均应小于其允许应力。 提示:核算钢管应力时缝隙用最大值,核算钢筋和混凝土应力时缝隙用最小值。6.3.2 钢管抗外压稳定分析 (1)核算光面埋管抗外压稳定。 假设钢管与混凝土缝隙为最大值,按SD 14485附录(二)中公式核算光面埋管抗外压稳定。 (2)加劲结构设计 当光面埋管不能满足抗外压失稳要求时,按采用加劲环、锚筋或加厚管壁等措施,分别按SD 14485附录(二)及编写说明附录(三)中方法设计加劲结构。 提示:(1)除采取加

25、劲措施外,也可设法减小外水压力; (2)通常不采用加厚管壁的方法; (3)建议采用锚筋式加筋,据几个工程经验,可比加劲环省70 %以上钢材,且便于混凝土浇筑;并已在多个工程中成功地运行。锚筋管设计除用公式计算外,还应用工程类比。6.3.3 配筋计算 根据6.3.1节计算的混凝土分担的最大比例的内水压力与相应的坝体应力荷载迭加,计算孔口附近的应力分布,按SDJ 2078拉应力面积法配筋。 提示:按拉应力面积配筋时应扣除混凝土承担的部分拉应力面积,部分工程设计中扣除部分面积并不受25%的限制。6.3.4 施工期校核 必要时,对接缝灌浆、回填混凝土、安装支腿等引起钢管的应力和抗外压失稳进行校核,以选

26、择适宜的内外支撑及施工方法。 提示:(1)例如对于大直径薄壁钢管、采用膨胀混凝土或混凝土泵施工等情况,必要时需校核施工期钢管应力和抗外压失稳。 (2)施工期校核时钢管计算壁厚应计入防锈蚀裕量。6.3.5 渐变管 提示:(1)不设钢管的渐变管 渐变段不设钢管时,结构计算方法同进水口段,按拉应力面积配筋。 (2)设钢管的渐变管 1)承受内水压 通常不计钢管作用,与不设钢管同样计算配筋量。 由于带圆角矩形孔口钢管与混凝土在内水压力下联合作用不明确,一般不计钢管作用。但有的工程设计时考虑钢管影响,例如利用加劲环替代部分钢筋,将配筋量适当减少。 配筋计算仍应迭加坝体应力等荷载。 2)承受外水压 按钢管单

27、独承受外水压力来设计。 通常按平板,考虑加劲环或锚环的约束作用进行结构分析。 按框架进行结构整体分析时,应考虑加劲环上设钢筋的作用。6.3.6 弯管与锥管 提示:按常规要求布置的弯管和锥管,仍用上述等径直管的方法计算,只需将弯管的允许应力降低10%,锥管的允许应力降低0%10%。7 附属设备的设计7.1 通气管提示:(1)当进水口工作闸门采用上游止水时,通气管按构造配筋; (2)当进水口工作闸门采用下游止水时,通气管按工作门槽内有水而通气管中无水的情况进行配筋计算。7.2 进人孔提示:(1)钢管下平段进人孔尽量与蜗壳进人孔结合;在钢管上端也应设进人孔,其位置可与通气管结合,最好与坝内交通廊道相通。 (2)进人孔采用焊接钢板结构为多,尽量采用压力容器进人孔的标准设计。人孔直径宜不小于500 mm。7.3 放空管提示:当锥管设在下平段,且轴线与等径直管段重合时,必须在管道最低点处设放空管,以便检修时排空积水。但当锥管设在下弯段之前,或是设在下平段,且采用平底斜锥管布置时,可不设放空管,而利用蜗壳排水管。7.4 伸缩节提示:通常伸缩节可要求机组制造厂配套供应。8 构造要求8.1 管壁最小厚度(包括防锈蚀厚度)不宜小于D/800+4 (mm),也不宜小于6 mm,其中D为钢管内径。 8.2 实际采用管壁厚度应为计算厚度加上2 mm防锈蚀裕量

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2