ImageVerifierCode 换一换
格式:DOCX , 页数:87 ,大小:584.46KB ,
资源ID:1966004      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-1966004.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基于SPWM变频调速矢量控制系统研究及其仿真.docx)为本站会员(b****2)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

基于SPWM变频调速矢量控制系统研究及其仿真.docx

1、基于SPWM变频调速矢量控制系统研究及其仿真1文献综述与调研报告:(阐述课题研究的现状及发展趋势,本课题研究的意义和价值、参考文献)1课题研究的现状及发展趋势直流电力拖动和交流电力拖动在 19世纪先后诞生1。在20世纪大部分时间中,直流拖动由于具有优越的调速性能而被广泛使用,因而一直处于主导地位。直到 20世纪中期,随着电力电子技术、微电子技术、电机学以及自动控制技术的发展,使得采用电力电子变换器的交流变频调速 系统应运而生。此时,早期的直流电动机的缺点显示出来了,如机械式换向器结构复杂,制造费 时,价格昂贵,且在换向时易产生火花。相比之下,交流电动机就具有许多的优点:结构简单, 重量轻,制造

2、方便,可靠性和运行效率高,不易出故障,适用场合不受限制等,交流电机的价格 也远远低于直流电机,。再者,直流电机由于换向器的存在,单机容量不可能很大,而交流电机则没有这个缺点。正是由于交流电机有这些优点,使得它在电力拖动系统中的应用日益比直流电动机广泛1819在电气传动中,广泛应用脉宽调制( PW pulse width modulation )控制技术,脉宽调制 技术的发展和应用优化了变频器装置的性能,适用于各类交流调速系统,为交流调速技术的普及 发挥了主要的作用。脉宽调制技术种类很多,并且还在不断的发展中,现有的技术基本可以分为四类:等宽PWM法、正弦PWMfe( SPWM磁链追踪型 PWM

3、fe和电流跟踪型 PWM法。PWM技术克服了相控技术的弊端,有效地抑制了高次谐波,使得交流电动机定子得到了接近正弦波形的电压和 电流,提高了电机的功率因素和输出效率 19。传统的交流变频变压脉宽调制技术是用正弦波来调制等腰三角波而获得一系列等幅不等宽的PWM巨形波1,而正弦波脉宽调制(SPWM则是将正弦波与三角波信号相比较,在交点时刻控制开 关器件的通断,即可得到一组等幅而脉冲宽度正比于该曲线函数值的矩形脉冲 13。通过改变正弦波控制信号的幅值和频率,即可实现变频变压的控制和消除谐波。 SPWM控制技术有单极式控制和双极式控制两种方式,三相桥式 PWM逆变器一般采用双极式控制方式。近年来,随着

4、电力电子技术的发展及交流电动机本身具有的优越性,为交流调速提供了广泛的应用前景。由于交流异步电动机的数学模型是一个高阶、非线性、强耦合的多变量系统,采用 经典的交流电机理论和传统的控制系统分析方法,不能完全适应于现代交流调速系统 13。上世纪70年代提出的异步电动机矢量控制和 80年代提出的异步电动机直接转矩控制系统则是比较好的电机控制方案,然而,作为高性能的调速系统,这两种方案虽能实现较高的静、动态性能,但这 两种系统的具体控制方式不一样,因而具有不同的优缺点。 直接转矩控制系统由于采用砰一砰控制能够带来很好的转矩响应,但同时由于其开关频率的不确定性,使得直接转矩控制系统存在输 出电压,电流

5、的谐波较大,输出电压偏低等缺点而使其稳态指标比矢量控制系统差 19。矢量控制系统的理论是通过坐标变换和磁场定向控制,把交流电动机的定子电流分解成磁场 定向坐标的磁场电流分量和与之相垂直的坐标转矩电流分量,从而实现两者之间的解耦,得到类 似于直流电机的转矩模型并可仿照直流电机进行快速的转矩控制和磁通控制,使系统动态性能得 到显著改善,从而使交流电机的调速技术了突破性的进展。目前,运用矢量控制已成为当今交流 变频调速系统的主流。2课题研究的意义和价值矢量控制理论解决了交流电动机的转矩控制问题, 应用坐标转换将三相系统等效为两相系统,再经过按转子磁场定向的同步旋转变换实现了定子电流励磁分量与转矩分量

6、的解耦,从而达到对 交流电机的磁链和电流分别控制的目的。使交流调速系统发生了质的飞跃,逐步取代直流调速系 统,成为主要的传动装置。例如,现代高速列车、地铁、电动汽车都采用了交流调速系统。上世纪70年代,许多专家学者经过潜心研究,并在实践中不断改进,终于形成了目前所普遍 应用的异步电动机矢量控制变频调速系统。为此,建立异步电动机矢量控制系统的仿真模型,可 以有效地节省控制系统的设计时间,及时验证施加于系统的控制算法,观察系统的控制输出,同 时可以充分利用计算机仿真的优越性,人为地加入不同的扰动和参数变化,以便考察系统在不同 工作情况下的动、静态特性。 MATLA提供的动态系统仿真工具 SIMUL

7、INK,是众多仿真软件中功能最强大、最优秀、最容易使用的一种。它具有模块化、可重载、可封装、面向结构图编程及可视 化等特点,可大大提高系统仿真的效率和可靠性。在分析异步电动机矢量控制方法的基础上,使 用MATLA的SIMULINK建立异步电动机矢量控制变频调速系统的仿真模型,利用仿真模型,进行控 制系统的仿真实验1318。1. SPWM原理及调制方法SPWM变频调速是交流调速系统中较为常见且较为有效的一种调速方式。其思路是江亦可条 幅调频的正弦波调制成一串等距、等幅、中间宽两边窄的脉冲信号。如图 1所示,如果把正弦波的上半部分n等分,然后把每一等分的正弦曲线与 t轴所包围的面积都用一个与此面积

8、相等的矩 形脉冲来等效。矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点重合。这 n个中间宽两边窄的等幅矩形脉冲与正弦波的半周等效,成为 SPWM波形。图1与正弦波等效的 SPWM波形若用SPWM波形作为逆变器的触发脉冲,则逆变器在理想状态下也应该输出 SPWM波形,通过改变矩形脉冲的宽度可以控制逆变器输出交流基波电压的幅值,通过改变调制周期(即正弦 波的周期)可以控制其输出频率,从而在逆变器上可以同时进行输出电压与频率的控制,满足变 频调速对电压与频率协调控制的要求。 SPWM各脉冲幅值相等,所以逆变器可由恒定的直流电源供电,另外,SPWM波形与正弦波等效,这样使负载电机可在近似正弦波

9、的交变电压下运行,转 矩脉动小,提高了系统的性能。采用高开关频率的全控型电力电子器件组成逆变电路时,先假定器件的开与关均无延时,于是可将要求变频器输出三相 SPWM波的问题转化为如何获得与其形状相同的三项 SPWM控制信号的问题,用这些信号作为逆变器中各电力电子器件的基极(栅极)驱动型号。UaUbUcUt参考信号发生器三角波发生器图 2 SPWM变压变频器的模拟控制框图图2是SPWM变压变频器的模拟控制框图。 三相对称的参考正弦电压调制信号 U ra、U rb、U rc有参考信号发送器提供,其频率和幅值都可调,三角载波信号有 Ut由三角波发送器提供,各项公用。它分别与每一相调制信号进行比较,产

10、生 SPWM脉冲波序列UaU bUc。三相桥式PWM逆变器所实现的目标是将恒定的直流输入电压整形为正弦波形的三相输出电 压,并控制输出电压的幅值和频率, 为了输出对称平衡的三相输出电压, 可将互差120。的三个正弦波控制信号电压与同一个三角载波比较,产生所需的开关控制信号三相桥式PWM逆变器采用双极性控制方式。在图 3所示的原理图中,VT1 VT6由SPWM波驱动图3三相桥式PWM逆变器原理图2矢量控制原理1矢量控制的提出直流电机的动态数学模型只有一个 输入变量(电枢电压)和一个输出变量(转速) ,在控制对象中含有机电时间常数 Tm和电枢回路电磁时间常数他 T1以及晶闸管的滞后时间常数 Ts

11、,可以描 述为单变量的三阶线性系统。而异步电动机在变频调速时需要进行电压(或电流)和频率的协调 控制,有电压(或电流)和频率两种独立的输入变量,如果考虑三相交流电,其实际输入变量还 要多。在异步电动机中,电压(电流) 、频率、磁通、转速之间相互都有影响,是强耦合的多变量 系统。三相异步电动机定子有三个绕组,转子也可等效为三个绕组,每个绕组产生磁通时都有自 己的电磁惯性,再加上运动系统的机电惯性,因此异步电动机是一个高阶、非线性、强耦合的多 变量系统。而矢量控制就是一种将三相交流的磁场系统转变为一个旋转体上的直流磁场系统。2矢量控制的基本构思如上所述,要把一个三相交流的磁场系统和一个旋转体上的直

12、流磁场系统,就需要一个两相 系统作为过度,可以互相进行等效变换。图6两相旋转绕组 A图4三相交流绕组图5两相交流绕组/ F3 1MiM当异步电动机多相对称绕组通已多相对称的电流时,能够产生磁场,如图 4所示是三相对称绕组A、B、C通以三相对称交流电流时,在空间产生一个角速度为 3 1的旋转磁场;图5是两个空间位置互相垂直的绕组 a和通以两相对称交流电流(相位差为 90)时,也产生一个旋转磁场,当两个旋转磁场的大小、转向、转速与合成磁场都相同时,图 4和5两套绕组是等效的,图6是两个相等且互相垂直的 M和T绕组,他们与旋转磁场同步旋转, M绕组的轴线与三相合成磁 场方向平行,T绕组的轴线则与之垂

13、直,绕组中分别通以直流电流 iM和iT,产生的磁场与三相合成磁场等效,则与合成旋转磁场平行的电流分量 iM相等于电动机的励磁电流分量,用它来产生电动机的磁场;与门垂直的分量iT相当于电动机的转矩电流分量。 调节iM的大小可以改变磁场的强弱,调节iT的大小可以在磁场一定时改变转矩。这样 中的绕组与 中的绕组等效。因此,只要通过变换运算,有规律的控制 iA、iB、iC,就能达到预想的调节iM和iT的目的,这就是异步电动机矢量变换控制的基本思想。异步电动机图7异步电动机的坐标变换结构图由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以这样通过坐标变换实现的控制系统就叫做矢量控制系统。图 7是上述

14、等效关系的结构图,从整体上来看,是一台输入为 A、B、C三相电压,输出为转速 3的异步电动机。从内容看,经过 3/2变换和同步变换,变成一台 iM和iT输入,输出的直流电动机。摘 要变频调速是交流电动机各种调速方式中效率最高、性能最好的调速方法 ,在整个交流调速中占有重要的地位。采用 MATLAB件包中的SIMULINK对基于数学模型基础上的电气 传动控制系统进行仿真建模,具有建模简便、结构直观、操作灵活等优点,并且仿真结果 具有较高的精度。本文介绍了现代交流调速系统的概况、矢量控制的基本概念以及在三相坐标系和两相 坐标系下的异步电动机的数学模型。并在此基础上应用 MATLA下的仿真工具SIM

15、ULINK软件建立了按转子磁场定向的异步电动机的数学模型,并对其进行仿真分析。重点是对交流 电机SPW变频调速矢量控制系统的建模和仿真,并给出了仿真模型和仿真结果。关键词:MATLAB/SIMULINK,矢量控制,异步电动机,仿真摘 要 IABSTRACT 错误!未定义书签。第一章概述 11.1现代交流调速系统的发展 11.2矢量控制 21.3研究内容 3第二章异步电动机的多变量数学模型 42.1异步电动机在三相坐标系上的数学模型和性质 42.1.1异步电动机在三相坐标系上的数学模型 42.1.2异步电动机在三相坐标系上数学模型的性质 92.2坐标变换 102.2.1三相静止/两相静止坐标变换

16、(3S/2S) 112.2.2两相静止/两相同步旋转的坐标变换(2S/2R) 132.2.3直角坐标一极坐标变换(K/P) 142.3异步电动机在两相坐标系上的数学模型 152.3.1两相任意旋转坐标系上的数学模型 152.3.2两相静止坐标系上的数学模型 182.3.3两相同步旋转坐标系上的数学模型 192.3.4按转子磁场(磁通)定向的数学模型 19第三章异步电动机的矢量控制策略 223.1矢量控制的基本思想 223.1.1矢量控制方法的提出 223.1.2矢量控制变换的思路 223.2按转子磁场定向的矢量控制的实现 233.3正弦波脉宽调制技术 263.3.1正弦波脉宽调制的原理 263

17、.3.2SPWM控制方法 263.3.3电压型三相桥式逆变器 27第四章 模型的建立和仿真结果分析 284.1MATLAB/SIMULINK 简介 284.2异步电动机仿真模型子系统的建立 284.2.13S/2R 变换 284.2.22R/3S 变换 294.2.3电压电流变换 30424异步电动机矢量控制模型 30425电流电压变换 31426逆变器模型仿真结构 314.3异步电动机模型仿真 314.3.1异步电动机转速和电磁转矩的关系 错误!未定义书签。4.3.2系统仿真 334.4基于SPWM变频调速矢量控制系统的仿真 354.4.1 SPWM变频调速矢量控制系统的模型建立 354.4

18、.2系统仿真 364.5系统仿真的比较 38第五章结论与展望 395.1结论 395.2研究展望 39参考文献 40致 谢 41第一章概述1.1现代交流调速系统的发展长期以来在调速传动领域大多采用磁场电流和电枢电流可以独立控制的直流电动机 传动系统,它的调速性能和转矩控制特性比较理想,可以获得良好的动态响应,然而由于 在结构上存在的问题使其在设计容量受到限制,不能适应高速大容量化的发展方向。交流 电动机以其结构简单、制造方便、运行可靠,可以以更高的转速运转,可用于恶劣环境等 优点得到了广泛的运用,但交流电动机的调速比较困难。在上个世纪 20年代,人们认识到变频调速是交流电动机一种最理想的调速方

19、法, 由于当时的变频电源设备庞大, 可靠性差,变频调速技术发展缓慢。60年代至今,电力电子技术和控制技术的发展 ,使交流 调速性能可以与直流调速相媲美。现代电子技术 (包括大规模集成电路技术、电力电子技术和计算机技术)的飞速发展、电动机控制理论的不断完善以及计算机仿真技术的日益成 熟,极大的推动了交流电动机变频调速技术的发展2。电气传动是现代最主要的机电能量变换形式之一。在当今社会中广泛应用着各式各样 电气传动系统,其中许多机械有调速的要求:如车辆、电梯、机床、造纸机械、纺织机械 等等,为了满足运行、生产、工艺的要求往往需要调速的另一类设备如风机、水泵等为了 减少运行损耗,节约电能也需要调速。

20、如果根据原动机来分类,那么原动机是直流电动机 的系统称之为直流电气传动系统;反之原动机是交流电动机的系统,则称之为交流电气传 动系统。如果根据转速的变化情况来分类,电气传动系统又可分为恒速电气传动系统和变 速电气传动系统两大类。在上世纪 80年代以前,直流传动是唯一的电气传动方式。这是 因为直流电动机调速方便,只要改变电机的输入电压或励磁电流,就可以在宽广的范围内 实现无级调速,而且在磁场一定的条件下它的转矩和电流成正比,从而使得它的转矩易于 控制、转矩的调节性能和控制性能比较理想。但是,在直流电气传动系统中,由于直流电 动机本身在结构上存在严重的问题,它的机械接触换向器不但结构复杂,制造费时

21、,价格 昂贵,而且在运行中容易产生火花,特别是由于换向器强度不高等问题的存在,直流电动 机无法做成高速大容量的机组;此外由于电刷易于摩擦等问题存在,在运行中需要有经常 性的维护检修,以上这些缺陷就造成了直流电气传动不尽理想。1885年交流鼠笼型异步电 动机的问世打破了直流传动作为唯一电气传动方式的局面。由于它结构简单、运行可靠、 价格低廉而且坚固耐用,惯量小,便于维修,适用于恶劣环境等特点,使其在工农业生产 中得到了极广泛的应用。但是交流电动机调速比较困难,而且其调速性能 (调速范围、稳定性或静差、平滑性等)却无法与直流调速系统相媲美,因此这些电机绝大部分都是恒速 运行的。早在19世纪30年代

22、,国外就开始研究各种交流电机变速传动。在早期采用的主 要是绕线式异步电动机转子外串电阻和鼠笼型异步电动机变极调速。后来在 50年代异步电动机定子串饱和电抗器的调速方法也有了一定的发展。由于受电机结构和制造工艺的限 制,变极调速通常只能实现两三种极对数的变换,不能做到连续地调节速度,调速范围和 极数都非常有限。此外还可以依靠改变定子电压 (改变电源电压或定子串阻抗),或绕线型 电动机转子串电阻,或带有转差离合器的异步电机调节励磁电流都可实现变转差率调速。 但是电机的损耗与转差率成比例地增大,效率随转速的降低而降低,由于电机在高转差、 低转速下运行特性恶化,使实际可行的调速范围受到限制。在 60年

23、代大功率半导体变频装置的问世开创了电力电子技术发展的新时代,这种半导体电力电子器件具有体积小、价 格低、坚固耐用、性能良好等优点,通过使用它可以连续地改变电源频率,十分理想地实 现交流电动机的无级调速,从而使交流电机调速技术飞跃发展。尤其是 70年代以来,大规模集成电路和计算机控制技术的发展, 新型电力电子器件的出现,以及先进控制理论(如 自适应控制、模糊控制、神经网络控制等 )等的应用,为交流电力拖动的开发进一步创造 了有利条件。如今交流调速领域相当活跃,新技术层出不穷。目前,交流调速系统正向集 成化、实用化、智能化方向发展。诸如交流电动机的串级调速、各类型的变频调速、无换 向电动机调速,特

24、别是矢量控制技术、直接转矩控制技术的应用,使得交流调速逐步具备 了宽调速范围、高稳速精度、快动态响应等良好的技术性能。原来的交直流拖动分工格局 被逐渐打破,在各工业部门用可调速交流拖动取代直流拖动己指日可待,特别是在世界能 源紧张、能源费用高涨的今天,交流调速技术作为节约能源的一个重要手段,引起了人们 的高度重视。总之,交流调速技术的应用有着广阔的前景,随着生产技术的不断发展,交 流调速逐步代替直流调速的时代己经到来2。1.2矢量控制当前异步电动机调速总体控制方案中, V/F控制方式是最早实现的调速方式。该控制方 案结构简单,通过调节逆变器输出电压实现电机的速度调节,根据电机参数,设定 V/F

25、曲线,其可靠性高。但是,由于其速度属于开环控制方式,调速精度和动态响应特性并不是 十分理想。尤其是在低速区域由于定子电阻的压降不容忽视而使电压调整比较困难,不能 得到较大的调速范围和较高的调速精度。矢量控制是当前工业系统变频应用的主流,它是 通过分析电机数学模型对电压、电流等变量进行解耦控制而实现的。 针对不同的应用场合, 矢量控制系统可以分为带速度反馈的控制系统和不带速度反馈的控制系统。矢量控制变频 器可以对异步电动机的磁通和转矩电流进行控制和检测,自动改变电压和频率,使指令值 和检测实际值达到一致,从而实现了变频调速,大大提高了电机控制静态精度和动态品质。 转速精度约等于0.5%,转速响应

26、也较快。采用矢量变频器一般电机变频调速三可以达到控 制结构简单、可靠性高的效果,主要表现在以下几个方面 :(1) 可以从零转速起进行控制,因此调速范围很广(2) 可以对转矩实行较为精确控制(3) 系统的动态响应速度快(4) 电动机的加速度特性好13研究内容本课题用MATLAB/SIMULINK 软件搭建数学模型仿真实现 SPWM变频调速矢量控制系统的仿真1、 从矢量控制的思想出发,在坐标系和矢量控制技术的基础上,针对多变量、非线性、 强耦合的异步电动机系统,使用按转子磁场定向的方法来建立系统的数学模型。2、 在MATLAB勺SIMULINK对电机模型、正弦波脉宽调制(SPWM) SPW变频调速

27、矢量 控制系统进行仿真,验证该系统的可行性和可靠性。第二章异步电动机的多变量数学模型一般来说,交流变速传动系统,特别是变频传动系统的控制是比较复杂的,要设计研 制一个品质优良的系统,要确定最佳的控制方式,都必须对系统的静态和动态特性进行充 分的研究。交流电机是交流变速传动系统中的一个主要环节,其静态和动态特性以及控制 技术远比直流电机复杂,而建立一个适当的异步电机数学模型则是研究交流变速传动系统 静态和动态特性及其控制技术的理论基础。2.1异步电动机在三相坐标系上的数学模型和性质2.1.1异步电动机在三相坐标系上的数学模型异步电动机是一个高阶、非线性和强耦合的多变量系统。这是因为首先异步电动机

28、在 进行变频调速时,电压和频率之间必须进行协调控制,故输入变量有电压和频率。而在输 出变量中,除转速以外,由于在调速过程中必须保持磁通为恒定,所以磁通也是一个控制 量,而且是一个独立的输出量。再考虑异步电动机是三相的,所以异步电动机的动态数学 模型是一个多输入、多输出(多变量)的系统,而电压(电流)、频率、磁通、转速之间又相 互影响,所以它是一个强耦合的多变量系统。其次,异步电动机的电磁转矩是磁通和电流 相互作用产生的,旋转感应电动势是转速和磁通相互作用产生的,因此,在数学模型中会 含有两个变量的乘积项,再考虑磁饱和的因素,所以异步电动机的数学模型是一个非线性 的系统。最后,由于异步电动机定、

29、转子三相绕组中的电流产生的磁通存在电磁惯性,转 速的变化存在机械惯性等因素,所以异步电动机的数学模型是一个高阶系统。在研究异步电动机的多变量数学模型时,常做如下假设 :1、 忽略空间谐波,设三相绕组对称(在空间互差120电角度),所产生的磁动势沿 气隙圆周按正弦规律分布;定子A、B、C及三相转子绕组a、b、c在空间对称分布2、 忽略磁路饱和,各绕组的自感和互感都是恒定的3、 忽略铁心损耗4、 不考虑温度和频率的变化对电机参数的影响无论电动机转子是绕线型的还是鼠笼型的, 都将它等效成绕线转子,并折算到定子侧, 折算后的每相绕组匝数都相等。这样,实际电动机就被等效为图 2.1示的三相异步电动机的物

30、理模型。图中,定子三相绕组轴线 A、B、C在空间是固定的,故定义为三相静止坐 标系。设A轴为参考坐标轴,转子以速度旋转,转子绕组轴线为a、b、c随转子旋转。转子a轴和定子A轴间的电角度差二为空间角位移变量。规定各绕组电压、电流、磁链的正方向符合电动机惯例和右手螺旋定则这时,异步电动机的数学模型由下述的电压方程、磁链方程、转矩方程和运动方程组成。图2.1 三相异步电动机的物理模型1电压方程式三相定子绕组电压平衡方程式为(2-1)ub GbRs 仏dtuc =icRs 仏dt与此相应,三相转子绕组折算到定子侧后的电压方程式为UaFaRr丄dt(2-2)(2-3)(2-4)Ub= ibRr.业dt(

31、2-5)Ucdt(2-6)式中, Ua , Ub , Uc , Ua , Ub , Uc 定子和转子相电压的瞬时值;iA , iB , ic , ia , ib , ic 定子和转子相电流的瞬时值; -A,B , C,匸a,匸b,匸c 各相绕组的全磁链;Rs,Rr 定子和转子绕组的电阻;上述各量都已折算到定子侧,为了简单起见,表示折算的上角标“dudt将电压方程用矩阵形式,并用微分算子p代替微分符号Ua Rs000000 000000Rsi BiCJaib丄一1%屮C甲b”均省略(2-7)或写成(2-8)=Ri p-2磁链方程式每个绕组的磁链是它本身的自感磁链和其他绕组对它的互感磁链之和,因此,六个绕组磁链可表达为PaI _LaaL ABLbaLbblcalcbLaALaBWbLbALbBL AaL AbLac 1LBaL BbL Bci

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2