ImageVerifierCode 换一换
格式:DOCX , 页数:27 ,大小:623.87KB ,
资源ID:2961290      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-2961290.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(杨柳青电厂燃烧优化论文Word文档下载推荐.docx)为本站会员(b****1)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

杨柳青电厂燃烧优化论文Word文档下载推荐.docx

1、 F风量 = M校核煤量 * 7.8 KgNCV信号的正常投入能确保二次风、三次风、三次风的正常配比,保证最终的过量空气系数为1.15 过量空气系数的计算公式为:X过量空气系数 = 21/(21-X烟气中的氧含量),在燃烧过程中减少不完全燃烧损失及排烟热损失。但在实际运行当中,NCV闭环控制调节缓慢,无法满足负荷多变,掺烧煤质多变的情况,使风量在负荷不变时,追随煤量变化,配风量偏高,锅炉效率下降,排烟温度上升。2、 氧量闭环控制存在的问题 氧量闭环控制以进入炉膛的总热量转换成氧量设定值,以左右侧烟道内烟气中氧含量的平均值为反馈,调节器的输出修正锅炉总风量的设定,控制三次风调节档板的开度,维持总

2、风量的平衡。但实际运行中三次风对风量的调节能力在220kg之间,当以前各级配风量偏大或煤质变化较大时,无法有效减少总风量,将导致风量偏高,排烟温度上升、送/引风机功率增加、锅炉效率下将,影响了机组运行的经济性。三、燃烧优化的设计思想图二 燃烧优化原理图为解决在相同负荷下,煤在不同掺烧情况运行时,煤质不同、煤量不同,维持总风量基本保持不变这一问题,采集特殊的与燃烧有关的参数,优化锅炉燃烧过程,弥合或缩小了以设计为基础的性能计算和电厂实际运行状况之间的距离。以锅炉的热效率为目标,使排烟热损失和不完全燃烧热损失之和为最小,即风量的配比达到最佳。因此,考虑到燃烧配风的各个环节,对参与风量设定的计算过程

3、进行修正,包括NCV、二次风、三次风、三次风;同时从安全运行的角度考虑,加入烟气中氧的体积含量、一氧化碳的含量,来确定安全燃烧的最佳点。在考虑到机组运行负荷及环境温度的变化,将目标负荷及环境温度设置为扰动量。整体的设计思想见图二:为实现上述的优化目的,采用POWER PERFECT神经元控制模型,实现对闭环控制中风量设定点的修正。神经网络是智能化技术发展的一个重要方法,是基于数据图形对高度负载、非线性的系统进行模型分析的工具,在大量锅炉燃烧试验数据的基础上用神经网络模拟实际的机组运行过程,具有识别、自我学习、逻辑思维和分析判断的能力。建立于神经网络基础上的锅炉燃烧优化系统,包括稳态模型、动态模

4、型、稳态和动态优化器。通过对锅炉运行的历史数据和试验数据的分析判断,以热效率和烟气中氧含量、一氧化碳的排放量为目标,优化锅炉的燃烧配风过程,从而在不断变化的运行状况下找出最佳的修正系数,选择最优化的系统运行方案(风量的配比关系),以实时在线的方式提供给运行人员作为参考开环控制,同时可由运行人员在CRT操作画面上投入/切除优化控制器,实现闭环控制。在DCS侧相应建立信号的发送和接收逻辑,与优化器之间建立通讯,选择优化逻辑信号的投/切接口、无扰切换逻辑、信号限值、过度过程时间,此外具有故障状态下优化信号自动切除功能。在原DCS系统中选择基本点数据,这些数据包括:一次风温、风量,二次风温、风量,烟气

5、排放温度,给煤量,再热器温度,过热器温度,炉膛出口过剩空气系数;辅助点数据包括:炉膛负压,炉膛烟气温度,空气预热器烟气入口温度,磨分离器出口温度,过热器压力,再热器压力,过热器喷水量,再热器喷水量,机组功率,辅机功耗等。四、POWER PERFECT简介Pegasus是美国专门从事电厂机组运行分析和过程优化控制的高技术软件公司。针对电力系统的特点,Pegasus技术公司应用最新技术,开发了一套智能优化电厂锅炉燃烧的应用系统POWER PERFECTERTM,在全世界已推出了多套过程优化解决方案,均取得良好的效果,获得了最佳的效益。POWER PERFECTERTM神经网络是智能化技术发展的一个

6、重要方法,含有多项美国专利。通过对锅炉运行历史数据和试验数据的分析判断,以热效率和氮氧化物、一氧化碳的排放量为目标,优化燃烧,同时将时实数据提供给操作人员,实现开环指示及闭环控制。在实现锅炉燃烧优化控制的过程中,提高锅炉热效率,减少点火的燃料损失,降低氮氧化物、一氧化碳等烟气中的污染物排放,具有显著的经济效益和社会环保效益。神经网络原理简介:人工神经网络是模拟生物大脑神经元细胞的结构和功能而构成的一种信息处理系统,具有自学习的特性,可以以任意精度逼近任意非线性连续函数,拥有很强的适用于复杂环境和多目标控制要求的能力,适用于复杂系统的优化控制。 图三 神经网络原理图图四 神经网络结构模拟图五、项

7、目实施过程 、项目概况 天津华能杨柳青电厂#5锅炉燃烧优化控制系统是北京华能自动化工程公司引进的由美国Pegasus公司利用最新技术开发的新产品Power PerfecterTM系统,结合#5机组的运行状况,通过应用基于神经元网络的模型,针对优化和控制复杂的非线性过程(燃烧控制),利用机组运行的历史数据和试验数据,对电厂燃煤机组的锅炉燃烧实施优化控制。从DCS数据库中采集与燃烧有关的运行实时数据(208个点),用来建立和评估模型,优化进入炉膛的燃料与空气的配比效果,实现锅炉的最佳效率和运行方式的自动化。降低NOx污染物排放,获得良好的经济效益和社会效益。、主要技术方案措施在DCS基础上建立优化

8、旁路控制系统,该系统基于神经网络技术、非线性算法和预测性高级控制理论,通过大量的机组运行数据,建立和培训智能化控制模型(神经网络),将该模型与原DCS系统结合起来,从DCS系统获取机组运行的实时数据,经过模型的优化分析,将实时数据及推算数据返回DCS,修正DCS的控制指令或目标并指示运行人员趋势预测,实现精确和动态的过程优化控制。锅炉燃烧优化控制主要包括以下几个方面:1、锅炉优化的通讯方案为实现优化旁路POWER PERFECTER与DCS系统间正确的数据通讯,对SIEMENE公司的DCS系统进行修改。包括:1)、TELEPHERM-ME部分:A、增加TELEPHERM -ME中的传送信号为完

9、成建立神经网络模型及对燃烧过程的分析,根据所需信号的清单,在相应的GET-TM控制逻辑图纸上增加至CS275总线输出信号,并在EAS-BUS中设定分配通道号。将208个信号,分配在不同的EA系统中。AS111:10点, 分配一个AKS块,AS112:8点,分配一个AKS块AS113:43点,分配两个AKS块,AS114:98点,分配四个AKS块AS115:16点,分配一个AKS块,AS116:21点,分配一个AKS块AS119:3点,使用原AKS块,AS120:2点,使用原AKS块。此外,根据逻辑及POWER PERFECTER要求,增加相应的发送/接收块:MKS81(开关量发送)MKS812

10、5HHL11DF001_XM36NN_2AIR_ON15HHL11DF001_XM32NN_2AIR_ON_2P35HFB10FF911_XM40NN_NCV_ON45HFB10FF911_XM41NN_NCV_ON_2P85HLA01DU001_XM36NN_AIR_ON75HLA01DU001_XM32NN_AIR_ON_2P105HLA01DU001_XM37NN_3I_ON95HLA01DU001_XM34NN_3I_ON_2P55HNA10DU001_XM42NN_O2_ON65HNA10DU001_XM43NN_O2_ON_2P115HNA10DQ001_XC115HO2PIDMO

11、DEAKE40(模拟量接收)AKE405HHL11DF001NN_Perfecter_HBNN_GUI_2AIR_05HFB10FF911NN_GUI_NCV_05HLA01DU001NN_GUI_AIR_0NN_GUI_3I_05HNA10DU001NN_GUI_O2_05HHL13DF001_XM55NN_SENSOR_VL5HHL13DF001PEG_OPT PEG_CUR RHT_OPT CO_OPT 12O2_CTL_OUT_OPT 13GAS_O2_OPT 14PEG_MAX 15PEG_MIN 165HHL31DF001RHT_MAX 17RHT_MIN 18CO_MAX19CO

12、_MIN 20O2_CTL_OUT_MAX 21O2_CTL_OUT_MIN 22GAS_O2_MAX23GAS_O2_MINAKE41(模拟量接收)AKE41NN_2AIR_ON_FPNN_NCV_ON_FPNN_AIR_ON_FPNN_3I_ON_FPNN_O2_ON_FPB增加TELEPHERM-ME中的操作块逻辑根据实际运行的需要,对DCS中的控制逻辑图纸进行修改,共有5个优化投/切操作按钮及一个总体投/切操作逻辑及故障状态下的优化自动退出逻辑。具体的逻辑修改如下:煤质修正切换逻辑: NN_GUI_NCV(5HFB10FF911/1113)三次风修正切换逻辑:NN_GUI_3I (5H

13、LA01DU001/1416)总风量修正切换逻辑:NN_GUI_AIR (5HLA01DU001/1113)二次风修正切换逻辑:NN_GUI_2AIR (5HHL11DF001/1114)氧量修正切换逻辑:NN_GUI_O2 (5HNA10DU001/1113)整体修正切换逻辑:NN_GUI_MVS_ON (5HHL11DF001/10)C. 增加在TELEPHERM-ME中的优化旁路信号修正点逻辑根据从POWER PERFECT至DCS的燃烧优化修正信号,共有5个优化投入时的输入信号,具体对应的逻辑修改如下:煤质修正:NN_NCV_0 5HFB(10,20)FF911/01,5HNA10DQ

14、001/03三次风修正:NN_3I_0 5HLA01DU001/01, 5HLA02DU001/01总风量修正:NN_AIR_0 5HLA01DU001/01, 5HLA02DU001/01二次风修正:NN_2AIR_0 5HHL(1144)DF001/02, 5HLA01DU001/01, 5HLA02DU001/01氧量修正:NN_O2_0 5HNA10DU001/03DOM650中增加一幅操作画面为方便快捷的对优化旁路进行切换操作,对应的在OM650中设计一幅CRT操作画面,显示相应参数及投切操作按钮。 OM操作画面如图五所示:图五 OM操作画面操作按钮如下:PB_MV_ON Push

15、Button to turn ALL MVs ON5HHL11DF001_XA89PB_MV_OFF Push Button to turn ALL MVs OFFPB_NCV_ON Push Button to turn NCV ON5HFB10FF911_XA89PB_NCV_OFF Push Button to turn NCV OFFPB_3I_ON Push Button to turn Tertiary Air ON5HLA01DU001_XA89PB_3I_OFF Push Button to turn Tertiary Air OFFPB_AIR_ON Push Button

16、to turn Boiler Air ON5HLA01DU001_XA90PB_AIR_OFF Push Button to turn Boiler Air OFFPB_2AIR_ON Push Button to turn Secondary Air ON5HHL11DF001_XA90PB_2AIR_OFF Push Button to turn Secondary Air OFFPB_O2_ON Push Button to turn O2 Adjustment ON5HNA10DU001_XA89PB_O2_OFF Push Button to turn O2 Adjustment O

17、FFCRT上显示下列信号及状态5MKA01CE001Unit_Load Current MW load5MKA01CE001_XQ01Air_Cntl_Mode Mode or status of Air Control Loop5HNA10DQ001NN_Perfecter_OK Perfecter Status Tag5HHL11DF001_XM22SENSOR_VLSensor value validiaty5HHL13DF001_XH55NN_NCV NCV Modifier5HFB10FF911_XQ05NN_3I Tertiary Air Modifier5HLA01DU001_X

18、Q06NN_AIR Boiler Air Modifier5HLA01DU001_XQ05NN_2AIR Secondary Air Modifier5HHL11DF001_XQ05NN_O2 O2Set Point Modifier5HNA10DU001_XQ07Peg Index Optimum5HHL13DF001_XQ11Peg Index Current Value5HHL13DF001_XQ12Peg Index Maximum Limit5HHL13DF001_XQ17Peg Index Minimum Limit5HHL13DF001_XQ18Reheat Temperatur

19、e Optimum5HHL13DF001_XQ13RHT_CUR Reheat Temperature Current Value5LBB02CT901_XQ01Reheat Temperature Maximum Limit5HHL31DF001_XQ11Reheat Temperature Minimum Limit5HHL31DF001_XQ12CO Optimum5HHL13DF001_XQ14CO_CUR CO Current Value5HNA10CQ901_XQ01 CO Maximum Limit5HHL31DF001_XQ13CO Minimum Limit5HHL31DF0

20、01_XQ14O2 Controller Output Optimum5HHL13DF001_XQ15O2_CTL_OUT_CUR O2 Controller Output Current Value5HNA10DQ001_XQ05O2 Controller Output Max Limit5HHL31DF001_XQ15O2 Controller Output Minimum Limit5HHL31DF001_XQ16Flue Gas O2 Optimum5HHL13DF001_XQ16GAS_O2_CUR Flue Gas O2 Current Value5HNA10CQ902_XQ01

21、Flue Gas O2 Maximum Limit5HHL31DF001_XQ17 Flue Gas O2 Minimum Limit5HHL31DF001_XQ18NN_Perfecter_HB Trend of HeartbeatSignalfrom Perfecter5HHL11DF001_XQ072)、S5部分:A、S5-155U与TELEPHERM-ME通讯 在S5-155U的OB13中增加与上述AKS对应的AKE块,用于信号的发送和接收,并分配到相应数量的DB数据块。具体对应关系如下:序号ME号块号S5对应块号AS111AKS100AKE100AS112AKE101AS113AKS

22、100101AKE102,103AS114AKS100104,AKE40,41AKE104108,AKS109,116MKS81,MKE40MKE110,MKS111AS115AKE112AS116AKE 113AS119AKS89AKE114AS120AKS84AKE115B、S5-155U与WINCC通讯为建立优化系统与DCS系统之间的双向通讯,将SOE机柜中的S5作为通讯接口(DCS中CS275总线的终端),在上面增加一块西门子的专用通讯卡件CP1430TF,在优化系统计算机上安装一块西门子的专用通讯卡件CP1613,两块卡通过专用电缆相连接。通过修改S5、ME等相关系统的程序,即可进行

23、通讯。在S5-155U中的OB1主程序中增加支持CP1430TF通讯模件的调用功能块:FB126/FB127。并设定以太网地址及读写的设备名称。在WINCC中增加支持S5以太网通讯协议S5 Ethenet network layer 4,并在该协议下增加所需通讯的信号组及各信号组下添加通讯的信号。图六 WINCC操作画面C、WINCC与POWER PERFECTER通讯使用WINCC自带的OPC SERVER与POWER PERFECTER进行通讯,在POWER PERFECTER建立读/写信号与WINCC信号一一对应,这样就完成了POWER PERFECTE内部的通讯工作。为便于对运行状态观

24、察及模型调试的需要,制作一幅优化操作显示画面,对优化中所需的优化目标设定最大、最小值,煤质成分分析输入接口,并显示优化的投入状态及优化系数。优化操作显示画面如图六所示:3)、信号流程图WINCCPP优化器S5-155UDCS系统、建立神经元模型1、 采集数据 为得到建立锅炉燃烧优化控制模型所必须的数据,需要进行一系列的燃烧工况试验,全面了解锅炉的运行特性,建立调节变量、控制变量、扰动变量之间的复杂的非线性关系,通过差分方程,寻找整个控制中各变量的关系,并寻找出模型的安全运行范围,根据获得的数据培训神经网络模型。A、 稳态试验 试验要求:在规定的条件下至少维持60分钟;在保证安全稳定的前提下,尽可能进行两个运行状态的转换 ;试验负荷要求150MW及300MW两个负荷;所有的锅炉配风闭环调节在自动状态。稳态试验在每个负荷下都有27种组合方式,考察在不同模型修正值状态下,对输出变量的影响,用以确定不同模型的修正作用以及每一个参数的安全运行范围。B、 动试实验 对于每个操作变量,从有效的试验状态开始,在可变范围内进行变化,最终回到启始状态;试

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2