ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:99.93KB ,
资源ID:2974595      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-2974595.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(植物激素信号转导机理.docx)为本站会员(b****1)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

植物激素信号转导机理.docx

1、植物激素信号转导机理What are “receptor”and“second messenger”,and what role do they play insignal pathways?答:受体是能与配体结合并能传递信息,引起效应的细胞成分,它是存在于细胞膜上或细胞质内的蛋白质大分子。(受体能与细胞外专一信号分子(配体)结合引起细胞反应的蛋白质。分为细胞表面受体和细胞内受体。受体与配体结合即发生分子构象变化,从而引起细胞反应,如介导细胞间信号转导、细胞间黏合、细胞胞吞等细胞过程。)受体的组成:接受部分和效应部分接受部分其功能是与递质、激素和药物等配体特异性结合;效应部分它起换能作用。类型

2、:离子通道型受体、G蛋白耦联受体、酶耦联受体。受体的分类:大多数药物在体内都是和特异性受体相互作用,改变细胞的生理生化功能而产生效应。目前已经确定的受体有30多种,根据受体存在的标准,受体可大致分为三类:1细胞膜受体:位于靶细胞膜上,如胆碱受体、肾上腺素受体、多巴胺受体、阿片受体等。2胞浆受体:位于靶细胞的胞浆内,如肾上腺皮质激素受体、性激素受体。3胞核受体:位于靶细胞的细胞核内,如甲状腺素受体。另外也可根据受体的蛋白结构、信息转导过程、效应性质、受体位置等特点将受体分为四类:1含离子通道的受体(离子带受体):如N-型乙酰胆碱受体含钠离子通道。2G蛋白偶联受体:M-乙酰胆碱受体、肾上腺素受体等

3、。3具有酪氨酸激酶活性的受体:如胰岛素受体。4调节基因表达的受体(核受体):如甾体激素受体、甲状腺激素受体等。有些受体具有亚型,各种受体都有特定的分布部位核特定的功能,有些细胞也有多种受体。受体receptor是一种能够识别和选择性结合某种配体(信号分子)的大分子物质,多为糖蛋白,一般至少包括两个功能区域,与配体结合的区域和产生效应的区域,当受体与配体结合后,构象改变而产生活性,启动一系列过程,最终表现为生物学效应。受体与配体间的作用具有三个主要特征:特异性;饱和性;高度的亲和力。据靶细胞上受体存在的部位,可将受体分为细胞内受体(intracellular receptor)和细胞表面受体(c

4、ell surface receptor,)。细胞内受体介导亲脂性信号分子的信息传递,如胞内的甾体类激素受体。细胞表面受体介导亲水性信号分子的信息传递,可分为:离子通道型受体、G蛋白耦联型受体和酶耦联型受体。每一种细胞都有其独特的受体和信号转导系统,细胞对信号的反应不仅取决于其受体的特异性,而且与细胞的固有特征有关。有时相同的信号可产生不同的效应,如Ach可引起骨骼肌收缩、降低心肌收缩频率,引起唾腺细胞分泌。有时不同信号产生相同的效应,如肾上腺素、胰高血糖素,都能促进肝糖原降解而升高血糖。细胞持续处于信号分子刺激下的时候,细胞通过多种途径使受体钝化,产生适应。如:修饰或改变受体,如磷酸化,使受

5、体与下游蛋白隔离,即受体失活receptor inactivation暂时将受体移到细胞内部,即受体隐蔽(receptor sequestration)通过内吞作用,将受体转移到溶酶体中降解,即受体下行调节.第二信使是细胞溶质中一类寿命短的,能触发化学反应的化学信号,他通常是被第一信使(神经递质或激素)刺激形成的,在结合G蛋白的细胞表面起受体的作用。第二信使(second messengers)已知的第二信使种类很少,但却能转递多种细胞外的不同信息,调节大量不同的生理生化过程,这说明细胞内的信号通路具有明显的通用性。能将细胞表面受体接受的细胞外信号转换为细胞内信号的物质称为第二信使,而将细胞外

6、的信号称为第一信使(first messengers)。第二信使为第一信使作用于靶细胞后在胞浆内产生的信息分子,第二信使将获得的信息增强,分化,整合并传递给效应器才能发挥特定的生理功能或药理效应。第二信使包括:环磷腺苷(cAMP),环磷鸟苷(cGMP),肌醇磷脂,钙离子,廿碳烯酸类,一氧化氮等。作用方式第二信使的作用方式 一般有两种:直接作用。如Ca能直接与骨骼肌的肌钙蛋白结合引起肌肉收缩;间接作用。这是主要的方式,第二信使通过活化蛋白激酶,诱导一系列蛋白质磷酸化,最后引起细胞效应。基本特性第二信使至少有两个基本特性:是第一信使同其膜受体结合后最早在细胞膜内侧或胞浆中出现、仅在细胞内部起作用的

7、信号分子;能启动或调节细胞内稍晚出现的反应信号应答。第二信使都是小的分子或离子。细胞内有五种最重要的第二信使:cAMP、cGMP、1,2-二酰甘油(diacylglycerol,DAG)、1,4,5-三磷酸肌醇(inositol 1,4,5-trisphosphate,IP3)、Ca2+(植物中主要的第二信使)等。第二信使在细胞信号转导中起重要作用,它们能够激活级联系统中酶的活性,以及非酶蛋白的活性。第二信使在细胞内的浓度受第一信使的调节,它可以瞬间升高、且能快速降低,并由此调节细胞内代谢系统的酶活性,控制细胞的生命活动,包括:葡萄糖的摄取和利用、脂肪的储存和移动以及细胞产物的分泌。第二信使也

8、控制着细胞的增殖、分化和生存,并参与基因转录的调节。What is the receptor “kinase”?Give an example of a plant signaling pathways that involved a receptor kinase?and outline the main step in the process. 受体酪氨酸激酶受体酪氨酸激酶(receptor tyrosine kinase, RTKs)RTKs是最大的一类酶联受体, 它既是受体,又是酶, 能够同配体结合,并将靶蛋白的酪氨酸残基磷酸化。所有的RTKs都是由三个部分组成的:含有配体结合位点的细

9、胞外结构域、单次跨膜的疏水螺旋区、含有酪氨酸蛋白激酶(RTK)活性的细胞内结构域。已发现50多种不同的RTKs,主要的几种类型包括:表皮生长因子(epidermal growth factor, EGF) 受体;血小板生长因子(platelet-derived growth factor, PDGF) 受体和巨噬细胞集落刺激生长因子(macrophage colony stimulating factor, M-CSF);胰岛素和胰岛素样生长因子-1 (insulin and insulin-like growth factor-1, IGF-1) 受体;神经生长因子(nerve growth

10、 factor, NGF) 受体;各类受体酪氨酸激酶各类受体酪氨酸激酶(酪氨酸激酶受体由细胞外、跨膜及细胞内三部分组成,细胞外侧与配体结合,由此接受外部信息,与之相连的是一段跨膜结构,细胞内侧为酪氨酸激酶活性区域,能促进自身酪氨酸残基的磷酸化而增强此酶活性,再催化细胞内各种底物蛋白磷酸化,激活胞内蛋白激酶,从而将细胞内信息传递到细胞外,如胰岛素受体等。)成纤维细胞生长因子(fibroblast growth factor, FGF) 受体;血管内皮生长因子(vascularendothelial growth factor, VEGF)受体和肝细胞生长因子 (hepatocyte growth

11、 factor, HGF) 受体等。受体酪氨酸激酶在没有同信号分子结合时是以单体存在的,并且没有活性;一旦有信号分子与受体的细胞外结构域结合,两个单体受体分子在膜上形成二聚体,两个受体的细胞内结构域的尾部相互接触,激活它们的蛋白激酶的功能,结果使尾部的酪氨酸残基磷酸化。磷酸化导致受体细胞内结构域的尾部装配成一个信号复合物(signaling complex)。刚刚磷酸化的酪氨酸部位立即成为细胞内信号蛋白(signaling protein)的结合位点,可能有1020种不同的细胞内信号蛋白同受体尾部磷酸化部位结合后被激活。信号复合物通过几种不同的信号转导途径,扩大信息,激活细胞内一系列的生化反应

12、;或者将不同的信息综合起来引起细胞的综合性应答(如细胞增殖)。激酶在生物化学里,激酶是一类从高能供体分子(如ATP)转移磷酸基团到特定靶分子(底物)的酶;这一过程谓之磷酸化。kinase一般而言,磷酸化的目的是“激活”或“能化”底物分子,增大它的能量,以使其可参加随后的自由能负变化的反应。所有的激酶都需要存在一个二价金属离子(如Mg2+或Mn2+),该离子起稳定供体分子高能键的作用,且为磷酸化的发生提供可能性。最大的激酶族群是蛋白激酶。蛋白激酶作用于特定的蛋白质,并改变其活性。这些激酶在细胞的信号传导及其复杂的生命活动中起到了广泛的作用。其他不同的激酶作用于小分子物质(脂质、糖、氨基酸、核苷等

13、等),或者为了发出信号,或者使它们为代谢中各种生化反应作好准备“激酶”的本意指的是使底物分子“激动”的酶,所以一般指从一个三磷酸核苷转移磷酸基至受体分子的酶,受体分子通过这个磷酸基的转移获得能量而被激活(变得更不稳定),所以很多的激酶需要从ATP转移磷酸基,但正如jensen所举的例子,激酶有时也可以由AMP及焦磷酸转移磷酸基,虽然一般来说,AMP和焦磷酸不能称之为高能化合物,但是“高能”与“低能”是相对的,没有绝对的标准,与磷酸化酶使用无机磷酸作为磷酸基供体相比,AMP与焦磷酸显然也是“高能”的。What is “ubiquitin”and what role dose it play in

14、 plant signaling pathways?泛素(ubiquitin)是一种存在于大多数真核细胞中的小蛋白。它的主要功能是标记需要分解掉的蛋白质,使其被水解。当附有泛素的蛋白质移动到桶状的蛋白酶的时候,蛋白酶就会将该蛋白质水解。泛素也可以标记跨膜蛋白,如受体,将其从细胞膜上除去。 泛素76个氨基酸组成,分子量大约8500道尔顿。它在真核生物中具有高度保留性,人类和酵母的泛素有96%的相似性。 需要被蛋白酶体降解的蛋白质会先被连接上泛素作为标记,即蛋白质上的一个赖氨酸与泛素之间形成共价连接。这一过程是一个三酶级联反应,即需要有由三个酶化学反应催化的一系列反应的发生,整个过程被称为泛素化信

15、号通路。在第一步反应中,泛素活化酶(又被称为E1)水解ATP并将一个泛素分子腺苷酸化。接着,泛素被转移到E1的活性中心的半胱氨酸残基上,并伴随着第二个泛素分子的腺苷酸化。被腺苷酸化的泛素分子接着被转移到第二个酶,泛素交联酶(E2)的半胱氨酸残基上。最后,高度保守的泛素连接酶(E3)家族中的一员(根据底物蛋白质的不同而不同)识别特定的需要被泛素化的靶蛋白,并催化泛素分子从E2上转移到靶蛋白上。靶蛋白在被蛋白酶体识别之前,必须被标记上至少四个泛素单体分子(以多泛素链的形式)。因此,是E3使得这一系统具有了底物特异性。 E1、E2和E3蛋白的数量依赖于生物体和细胞类型,人体中就存在大量不同的E3蛋白,这说明泛素-蛋白酶体系统可以作用于数量巨大的靶蛋白。多泛素化后的蛋白质是如何被蛋白酶体所识别的,还没有完全弄清。泛素受体蛋白的N末端具有一个类泛素结构域,以及一至多个泛素结合结构域。类泛素结构域可以被19S调节颗粒所识别,而泛素结合结构域可以通过形成三螺旋束来结合泛素。这些受体蛋白可能能够结合多泛素化的蛋白质并将其携带到蛋白酶体,而关于这种结合的特异性和调控机制还不清楚。最终,被标记的蛋白质被蛋白酶分解为较小的多肽、氨基酸以及可以重复使用的泛素。况2004年,阿龙切哈诺沃、阿夫拉姆赫什科、欧文罗斯因发现了泛素调解的蛋白质降解过程而获得了诺贝尔化学奖。

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2