ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:51.70KB ,
资源ID:4343863      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-4343863.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(冷却系统利用流体吸热交换器 毕业设计外文翻译.docx)为本站会员(b****4)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

冷却系统利用流体吸热交换器 毕业设计外文翻译.docx

1、冷却系统利用流体吸热交换器 毕业设计外文翻译Refrigeration System Performance using Liquid-Suction Heat ExchangersS. A. Klein, D. T. Reindl, and K. BroWnellCollege of EngineeringUniversity of Wisconsin - MadisonAbstractHeat transfer devices are provided in many refrigeration systems to exchange energy betWeen the cool gas

2、eous refrigerant leaving the evaporator and Warm liquid refrigerant exiting the condenser. These liquid-suction or suction-line heat exchangers can, in some cases, yield improved system performance While in other cases they degrade system performance. Although previous researchers have investigated

3、performance of liquid-suction heat exchangers, this study can be distinguished from the previous studies in three Ways. First, this paper identifies a neW dimensionless group to correlate performance impacts attributable to liquid-suction heat exchangers. Second, the paper extends previous analyses

4、to include neW refrigerants. Third, the analysis includes the impact of pressure drops through the liquid-suction heat exchanger on system performance. It is shoWn that reliance on simplified analysis techniques can lead to inaccurate conclusions regarding the impact of liquid-suction heat exchanger

5、s on refrigeration system performance. From detailed analyses, it can be concluded that liquid-suction heat exchangers that have a minimal pressure loss on the loW pressure side are useful for systems using R507A, R134a, R12, R404A, R290, R407C, R600, and R410A. The liquid-suction heat exchanger is

6、detrimental to system performance in systems using R22, R32, and R717.IntroductionLiquid-suction heat exchangers are commonly installed in refrigeration systems With the intent of ensuring proper system operation and increasing system performance.Specifically, ASHRAE(1998) states that liquid-suction

7、 heat exchangers are effective in:1) increasing the system performance2) subcooling liquid refrigerant to prevent flash gas formation at inlets to expansion devices3) fully evaporating any residual liquid that may remain in the liquid-suction prior to reaching the compressor(s)Figure 1 illustrates a

8、 simple direct-expansion vapor compression refrigeration system utilizing a liquid-suction heat exchanger. In this configuration, high temperature liquid leaving the heat rejection device (an evaporative condenser in this case) is subcooled prior to being throttled to the evaporator pressure by an e

9、xpansion device such as a thermostatic expansion valve. The sink for subcooling the liquid is loW temperature refrigerant vapor leaving the evaporator. Thus, the liquid-suction heat exchanger is an indirect liquid-to-vapor heat transfer device. The vapor-side of the heat exchanger (betWeen the evapo

10、rator outlet and the compressor suction) is often configured to serve as an accumulator thereby further minimizing the risk of liquid refrigerant carrying-over to the compressor suction. In cases Where the evaporator alloWs liquid carry-over, the accumulator portion of the heat exchanger Will trap a

11、nd, over time, vaporize the liquid carryover by absorbing heat during the process of subcooling high-side liquid.BackgroundStoecker and Walukas (1981) focused on the influence of liquid-suction heat exchangers in both single temperature evaporator and dual temperature evaporator systems utilizing re

12、frigerant mixtures. Their analysis indicated that liquid-suction heat exchangers yielded greater performance improvements When nonazeotropic mixtures Were used compared With systems utilizing single component refrigerants or azeoptropic mixtures. McLinden (1990) used the principle of corresponding s

13、tates to evaluate the anticipated effects of neW refrigerants. He shoWed that the performance of a system using a liquid-suction heat exchanger increases as the ideal gas specific heat (related to the molecular complexity of the refrigerant) increases. Domanski and Didion (1993) evaluated the perfor

14、mance of nine alternatives to R22 including the impact of liquid-suction heat exchangers. Domanski et al. (1994) later extended the analysis by evaluating the influence of liquid-suction heat exchangers installed in vapor compression refrigeration systems considering 29 different refrigerants in a t

15、heoretical analysis. Bivens et al. (1994) evaluated a proposed mixture to substitute for R22 in air conditioners and heat pumps. Their analysis indicated a 6-7% improvement for the alternative refrigerant system When system modifications included a liquid-suction heat exchanger and counterfloW syste

16、m heat exchangers (evaporator and condenser). Bittle et al. (1995a) conducted an experimental evaluation of a liquid-suction heat exchanger applied in a domestic refrigerator using R152a. The authors compared the system performance With that of a traditional R12-based system. Bittle et al. (1995b) a

17、lso compared the ASHRAE method for predicting capillary tube performance (including the effects of liquid-suction heat exchangers) With experimental data. Predicted capillary tube mass floW rates Were Within 10% of predicted values and subcooling levels Were Within 1.7 C (3 F) of actual measurements

18、.This paper analyzes the liquid-suction heat exchanger to quantify its impact on system capacity and performance (expressed in terms of a system coefficient of performance, COP). The influence of liquid-suction heat exchanger size over a range of operating conditions (evaporating and condensing) is

19、illustrated and quantified using a number of alternative refrigerants. Refrigerants included in the present analysis are R507A, R404A, R600, R290, R134a, R407C, R410A, R12, R22, R32, and R717. This paper extends the results presented in previous studies in that it considers neW refrigerants, it spec

20、ifically considers the effects of the pressure drops,and it presents general relations for estimating the effect of liquid-suction heat exchangers for any refrigerant.Heat Exchanger EffectivenessThe ability of a liquid-suction heat exchanger to transfer energy from the Warm liquid to the cool vapor

21、at steady-state conditions is dependent on the size and configuration of the heat transfer device. The liquid-suction heat exchanger performance, expressed in terms of an effectiveness, is a parameter in the analysis. The effectiveness of the liquid-suction heat exchanger is defined in equation (1):

22、Where the numeric subscripted temperature (T) values correspond to locations depicted in Figure 1. The effectiveness is the ratio of the actual to maximum possible heat transfer rates. It is related to the surface area of the heat exchanger. A zero surface area represents a system Without a liquid-s

23、uction heat exchanger Whereas a system having an infinite heat exchanger area corresponds to an effectiveness of unity.The liquid-suction heat exchanger effects the performance of a refrigeration system by in fluencing both the high and loW pressure sides of a system. Figure 2 shoWs the key state po

24、ints for a vapor compression cycle utilizing an idealized liquid-suction heat exchanger on a pressure-enthalpy diagram. The enthalpy of the refrigerant leaving the condenser (state 3) is decreased prior to entering the expansion device (state 4) by rejecting energy to the vapor refrigerant leaving t

25、he evaporator (state 1) prior to entering the compressor (state 2). Pressure losses are not shoWn. The cooling of the condensate that occurs on the high pressure side serves to increase the refrigeration capacity and reduce the likelihood of liquid refrigerant flashing prior to reaching the expansio

26、n device. On the loW pressure side, the liquid-suction heat exchanger increases the temperature of the vapor entering the compressor and reduces the refrigerant pressure, both of Which increase the specific volume of the refr igerant and thereby decrease the mass floW rate and capacity. A major bene

27、fit of the liquid-suction heat exchanger is that it reduces the possibility of liquid carry-over from the evaporator Which could harm the compressor. Liquid carryover can be readily caused by a number of factors that may include Wide fluctuations in evaporator load and poorly maintained expansion de

28、vices (especially problematic for thermostatic expansion valves used in ammonia service). (翻译) 冷却系统利用流体吸热交换器克来因教授,布兰顿教授, , 布朗教授威斯康辛州的大学 麦迪逊摘录加热装置在许多冷却系统中被用到,用以制冷时遗留在蒸发器中的冷却气体和离开冷凝器发热流体之间的能量的热交换.这些流体吸收或吸收热交换器,在一些情形中,他们降低了系统性能, 然而系统的某些地方却得到了改善. 虽然以前研究员已经调查了流体吸热交换器的性能, 但是这项研究可能从早先研究的三种方式被加以区别. 首先,这份研究开

29、辟了一个无限的崭新的与流体吸热交换器有关联的群体.其次,这份研究拓宽了早先的分析包括新型制冷剂。第三, 研究包括压力的冲击降低了流体吸热交换器的系统性能. 在简单的技术信息分析中表明流体吸热交换器对冷却系统性能的冲击可能导致错误的结论.从详细说明分析里,它能得出一个结论,那就是液体- 吸加热交换器在低压区域上的临界压力使用 R507A , R134a , R12 , R404A , R290 ,R407C , R600 和 R410A这些制冷剂,对系统是有用的。而使用 R22 , R32 和 R717对系统的性能是有害的.介绍 流体吸热交换器被普遍的安装在正确合适的系统操作和提高系统性能的制冷

30、系统中。很明显, ASHRAE(1998) 液体- 吸加热交换器的确是有效的他表现在:1)增加系统性能2)液体制冷剂防止散发气体进入扩充装置。一些剩余的液体在到达之前被完全蒸发了。图 1 列举了一个简单的指示。压缩物 (s) 可能利用流体吸热交换器保持的液体扩充蒸汽压缩的性能.3)在这一个结构中,高温液体余热像一个温度调节装置一样拒绝装置 (蒸发冷凝器就是这种情况) 在扩充之前对蒸发器的压力再冷却,洗涤槽是为了接收在低温度冷冻下遗留在蒸发器内的再冷却液. 因此,流体吸热交换器是一种从液体到蒸汽热交换的间接装置. 热交换器 (在蒸发器出口和压缩物吸收之间) 的蒸汽边界经常承担积聚压缩物吸的液体,

31、藉此将对滞留的液体制冷剂的危险性减到更少. 在蒸发器允许液体滞留的情形中, 在热交换器中积聚部分会困住而且,超过一定的时间后,在液体再冷却的过程中,滞留的液体被吸收热量而蒸发.背景Stoecker 和 Walukas(1981) 着重于利用流体吸热交换器在单一温度蒸发和双重的温度蒸发系统的影响下的冷冻混合.他们的分析指出当nonazeotropic混合剂或azeoptropic混合剂与利用单一成份制冷剂的系统相比较时, 流体吸热交换器产生更多性能的改进。McLinden(1990) 用了相关的原则评价新的制冷剂被预期的效果. 他指出作为理想的特殊性气体使用在流体吸热交换器中增加这项系统的性能(

32、谈到制冷剂的复杂的分子结构)。 Domanski 和 Didion(1993) 评估了包括流体吸热交换器的替代品 R22 的九个性能. Domanski et al. (1994)稍后鉴于对29种 不同的制冷剂一项理论分析,扩大了流体吸热交换器安装在蒸汽压缩冷却系统的评价Bivens et al. (1994)评估了一种被提议的混合物来替代为空调和热泵中使用的 R22。他们的分析指出当系统修正包括了流体吸热交换器和 逆向系统热交换器的时候 , 两者之一的冷冻系统有 6-7% 进步 (蒸发器和凝结器). Bittle et al做了一项评估流体吸热交换器在家用电冰箱中采用制冷剂R152a实验作者

33、把该系统性能与传统的以R12 为基础的系统作了一个比较。 Bittle et al把制冷与空调工程师学会对毛细管性能的预言做了一个比较。(包括流体吸热交换器的影响)被预知的毛细管流速是早先评价的 10%,再冷却水平的真实测量值在1.7摄氏度之内。这篇论文分析流体吸热交换器在系统容量和性能方面的影响 (表达为一个系统性能系数即COP).流体吸热交换器尺寸超出操作条件的范围的影响(蒸发和冷凝)在许多选择性的制冷剂中被安插和量化.在目前被包括分析的制冷剂是 R507A , R404A , R600 , R290 , R134a , R407C, R410A , R12 , R22 , R32 和 R717. 这篇论文扩充目前对以前研究考

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2