ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:28.68KB ,
资源ID:4621657      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-4621657.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(热力学数据在无机化学中的应用01.docx)为本站会员(b****3)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

热力学数据在无机化学中的应用01.docx

1、热力学数据在无机化学中的应用01热力学数据在无机化学中的应用引言 化学热力学数据在化学领域里有着广泛的应用。在无机化学范围内,主要讨论能量平衡和一定条件下,化学反应进行的方向及限度和反应发生条件,还有就是判断一些无机物的溶解性。1、在化学反应中的应用1.1 判断化学反应进行的方向及发生条件综合焓变(H)和熵变(S)这两个能量项, 热力学用自由能(G)这个状态函数的变化量(G)来判断反应进行的方向, 即吉布斯一亥姆霍兹提出的1:G = H - TS (1)或 G298 = H298 - TS298 (2)当G O 过程非自发(或逆过程自发)因此, 在恒温恒压下进行的化学反应:(1 ) 体系焓减或

2、熵增, G 0 , 反应自发进行。(2 ) 当反应热很小, 熵效应对反应进行的方向起决定性作用。(3 ) 反应熵变很小,特别在低温时, TS此项影响不大,H决定反应进行的方向。(4 ) 反应熵变较大, 特别当温度变化较大时, 有可能导致G符号的改变, 从而改变反应进行的方向。例1 石灰窑中烧制石灰的反应为CaCO3(s) CO2(g) + CaO(s)试计算欲使石灰石以一定速度分解所需的最低温度是多少?解: 查得有关物质的G、H和SCaCO3(s) CO2(g) + CaO(s)G(KJmol-1) -1128.8 -604.2 -394.0H(KJmol-1) -1207.0 -635.1

3、-393.0S (Jmol-1K-1) 92.9 39.7 214.0计算得该反应的 G298= 130.6 KJmol-1 , 则该反应在室温下不能自发进行。再计算得该反应的 H298=178.9 Jmol-1;S298=160.8Jmol-1K-1,根据G = H - TS 欲使反应自发进行,必需G H。故当T 时,反应自发进行。 =178.9/160.810-3 = 1113K答: 使石灰石分解所需最低温度是 1113K。即石灰窑中温度高于1113K ,才能使石灰石分解。例2 Zn(s) + Cu2+(aq) Zn2+(aq)+ Cu(s )Hf (KJmol-1) 0 64.8 -15

4、3.9 0S (Jmol-1K-1) 41.6 -99.6 -112.0 33.0计算得H = -218.7 KJmol-1; S = -19.0 Jmol-1K-1, 则室温下, 该反应的G = H - 298S = -213.0 KJmol-1。G 0 , 说明该反应在室温下能自发进行。该反应熵变很小, 所以H 的符号基本决定了反应进行的方向。化学反应进行的方向与H、TS及G的关系可归纳为下表(表1.1.1 )。表1.1.1 H、TS、G与反应进行的方向HTSG反应进行的方向- + -任意温度自发进行+ - +任意温度非自发进行+ + +或-高温时自发- -或+低温时自发1.2 判断化学反

5、应完成的程度从热力学可以导出化学反应的平衡常数(K)与自由能变(G)之间的关系: G = -RT lnK (3)室温(298K ) 时, 则 G = -5.7 lgK (4)由(4)式,当 K 1 时,G 0 , 正向反应能自发进行, 且 K 值越大, G负值越大, 反应完成的程度越高。当 K 1时, G 0 , 正向反应不能自发进行。前例2 中, lgK = -()= -()=37.4 则 K = 2.51037K 值表明例2反应不仅能自发进行, 且完成得相当彻底。1.3 应用热力学原理指导化学反应的选择在过去的无机化学教材中, 从能量角度讨论化学反应显得比较薄弱。热力学内容的引进, 则可以

6、从理论上比较全面地、本质的解释反应的发生, 指导反应的选择, 这里通过两个例子来说明2。例3 试讨论在298.15K标准态时, 氢氟酸、盐酸可否与二氧化硅(玻璃态)作用。 反应试如下:SiO2(玻璃态)+ 4HX(aq) = SiX4(g) + 2H2O(l)有关热力学数据如下:SiX(态)H298 KJmol-1H298 S298G298 KSiX(态)HX(aq)SiO2(玻)H2O(l)KJmol-1Jmol-1K-1KJmol-1K298SiF4(g)-1548-329.1-847.3-258.544.1 175 -8.1310SiCl4(l)-640.2-167.5-847.3-25

7、8.5305.5 111 272310-41从表1.3.1中数据可见, 虽然这些反应都是吸热反应, 但根据 298K 表1.3.1 硅化物的热力学数据时的G 为负,可以判断出氟酸仍可与SiO2作用, 而盐酸却不能。这样就从热力学角度说明了为什么常温下氢氟酸可与SiO2作用, 而盐酸则不能。例4 设想用下列三个反应来“固氮”, 试判断哪个反应比较合适? 2 N2(g) + O2(g) = 2 N2O(g) N2(g) + O2(g) = 2 NO(g) N2(g) + 3 H2(g) = 2 NH3(g)有关热力学数据如下:表1.3.2 各反应的热力学数据反应H298 S298G298KJmol

8、-1Jmol-1K-1KJmol-1163.2-148.0207.3180.824.7173.4-92.4-198.333.3结果表明, 在标准状态时, 反应是焓增熵减过程, 在任何温度下均不能正向自发进行;反应是焓增熵增过程, 只有在同温(约高于7000)时才可进行;反应即使是在标准状况下也可以自发进行。 这就是Haber合成氨的理论基础。这样选择一个化学反应就有了热力学依据,增加了选择的可靠性, 减少了盲目性。2、在无机物溶解性中的应用物质在水中的溶解度大小是物质的一个重要性质。物质的溶解问题是一个复杂的问题。因为影响物质的溶解度大小与许多因素有关, 如物质的状态, 溶解时的温度、压力及溶

9、剂的性质等。在无机物中经常遇到的是气体或固体在水中的溶解。气体或固体在水中的溶解与否都与这一过程的自由能变有关3。例如在标准状态下, 气体在水中的溶解平衡: H2(g) H2(aq)这一过程的自由能变G = Gf (H2,aq) Gf(H2,g)而G = -RT lnSH2SH2表示H2在水中溶解的摩尔活度。固体盐在水中的溶解平衡:MX(s) M+(aq) + X-(aq), 但这一过程的自由能变则为:G = -RT lnKsp ,Ksp表示离子的活度积。从以上两种物质在水中溶解过程的自由能变可以看出,G越大, 则物质的溶解度越小,G越小, 则物质的溶解度越大4。2.1 判断气态物质在水中的溶

10、解性氮气、氧气、氢气以及稀有气体, 通常它们在水中溶解的量是很少的。而另一些气体如氯化氢、溴化氢、硫化氢、氨气等, 则是易溶于水的(见下面表2.1.1)。这种现象可以从它们溶解过程的焓变和熵变来分析5。表2.1.1 一些气体在水中的溶解度气体在单位体积水中的溶解度气体在100g水中溶解的克数H20.0215HBr221He0.0097HCl83.3N20.0235H2S3.4O20.0489NH387.5 指1体积水中溶解气体的体积数, 以上都是298.15K,101.3KPa下的数据。由表2.1.1即知气体的溶解度S与溶解过程的自由能变有如下关系:G = -RT lnS H - TS = -

11、RT lnS显然, 若溶解过程为放热(H 0)时, 对其溶解是有利的。若溶解过程的混乱度增加即S0 , 对溶解也是有利的。若这一过程为吸热(H 0)或混乱度减小S0, 则不利于溶解。氮气、氧气、氢气溶于水的过程不产生化学变化, 即不涉及到化学键的破坏和生成。一方面克服同二类分子间作用力, 另一方面气体分子与水分子发生相互作用。前者是吸热, 后者是放热。由于分子间作用力较小, 这类气体溶解于水的过程其热效应不会有明显的改变6。即H对这类气体的溶解度贡献很小。从这类气体溶解过程的熵变来看, 由于气态分子在未溶于水以前是在广阔的空间运动,当进入水中后, 只能在一个较小范围内运动, 体积变小, 则熵值

12、变小, 而熵值变小是不利于该气体溶解的。综合考查这类气体的溶解过程的焓变和熵变, 可以看出它们在水中的溶解度应该是很小的。对于溴化氢、氯化氢、硫化氢等气体, 它们在水中溶解度是比较大的。主要原因是这些气体溶解在水中的过程放出大量热。即H为负值, 显然对其溶解度增大有利。例如HBr溶解于水的过程, 一方面破坏H一Br间的化学键(吸热),另一方面是H+和Br-离子发生水合(放热)。气态氢离子水合热(335.9 KJmol-1)足以抵消断开H一Br键时所消耗的能量(336.1 KJmol-1), 所以它溶于水并能放出大量的热, 从而使HBr有较大的溶解度。另外HBr的溶解过程是熵变减小的过程。由于H

13、Br进到水中, 气体体积减小, 熵值降低, 与此同时,H+离子和Br-离子的水合, 使它周围的水分子发生定向排布, 于是混乱度减小。虽然HBr电离发生质点数量增加而使熵值增大, 但却不能抵消上面提到的熵值降低, 总结果仍是熵值变小。由于这一过程焓变起主要作用, 所以HBr的溶解度比其他非极性分子氢、氮等大大增加, 这就是我们在无机化学上经常说的“ 相似相溶” 规律。H2S在水中的溶解度远不如HBr大, 这是由于H2S不能完全电离, 而且离子水合热也不很大, 所以其溶解度不如HBr大。2.2 判断无机盐类溶解性2.2.1 自由能变与溶解难易无机盐类溶于水, 若过程的S0, 则溶解过程能自发进行或

14、易于溶解, 若S0, 溶解过程不能自发进行或难于溶解7。由表1.1.1 , 若溶解焓H为负, 溶解熵S为正, 则G为负, 易于溶解; 若H为正, S为负, 则G为正, 不易溶解或难于溶解。例5 NaCI(s) Na+ (aq)+ CI-(aq)查热力学数据并计算得, 反应的H=-79.7 KJmol-1 ,TS=12.9 KJmol-1, 所以G =H - TS = -92.6 KJmol-1 0本例中, NaC1(s)的H 和TS均对溶解有利, 使NaC1易溶于水。而AgCI的TS对溶解有利, 但其H对溶解不利, 且不能被TS克服, 室温下难溶于水。例6 CaC12 (s) Ca2+ (aq

15、)+ 2CI-(aq)H = -82.2 KJmol-1 TS = -16.7 KJmol-1 G = -65.5 KJmol-1 0CaF2(s) Ca2+ (aq) + 2F-(aq)H = 13.8 KJmol-1 TS = -42.7 KJmol-1 G = 56.5 KJmol-1 0本例中,TS项均对溶解不利, 但CaC12(s)的H负值较大, 仍使G为负值而易溶于水; 而CaF2(s)的H为正值, 也不利于溶解, 使CaF2难溶于水8。2.2.2 近似估计据式(4),可近似估计溶解过程的难易。若以溶解度0.001 mol/L作为易溶与难溶的“界线”, 则溶解度大于0.001 mo

16、l/L者易溶, 而小于0.001 mol/L者为难溶。为此可作如下近似处理:对于1、-1价或2、-2价型盐MA,溶于水时有如下过程MA(s) Mn+(aq) + An-(aq)( n = 1或2 )则Ksp = Mn+An-=(0.001)2=110-6若不考虑Ksp与Kap的区别,将Ksp = 110-6代入(4 )式, 即得G=-5.7 Lg10-6=34.2 KJmol-1这样, 将1、-1价或2、-2价的MA型盐的G值与34.2 KJmol-1进行比较,若G 34.2 KJmol-1 则盐难溶于水;若G 34.2 KJmol-1 则盐易溶于水9。同理, 可算得其它价型盐的G“界线”值,

17、 一并列于表2.2.1.1。 表2.2.1.1 不同价型盐的G“界线”值价型G“界线”值(KJmol-1)1、-1价或2、-2价 34.21、-2价或2、-1价 47.91、-3价或3、-1价 57.52、-3价或3、-2价 73.9根据(2) 式算出某些盐的G, 应用表2.2.1.1中数据, 进行近似判断, 结果见表2.2.2.2。 表2.2.2.2 某些盐的G值与溶解性盐 类名 称H(KJmol-1) TS(KJmol-1)G(KJmol-1)判断溶解性实际溶解性NaN0319.426.6-7.234.2易溶易溶KNO333.134.6-1.534.2易溶易溶Na3PO4-78.7-68.

18、6-9.957.5易溶易溶CuS146-53.6199.634.2难溶难溶Ca3(PO4)2-51-25220173.9难溶难溶CaF213.8-42.756.547.9难溶难溶由表2.2.2.2可以看出, 尽管NaN03和KNO3的H为正值, 但由于溶解过程中熵增明显, 使G值减小而易溶。Ca3(PO4)2 的H虽为负值, 但由于熵减明显, 使了G正值较大而难溶。对于Na3PO4, 其H负值较大且不能被熵减克服,易溶10。以上讨论, 涉及热力学函数的概念及简单数学运算, 能较简便地解释一些在一定条件下化学反应进行方向及反应发生条件、限度的确定和无机物中某些物质的溶解性的判断, 这仅是热力学数

19、据在无机化学中广泛应用的极小一部分。参考文献1 上海师范大学,北师范大学,等物理化学M.北京: 高等教育出版社,19922 郑录.普通化学化学热力学 中的几个问题.化学教育1983.43 杨德壬. 无机化学中的一些热力学问题M.上海科学技术出版社,19864 武汉大学、吉林大学等编 ,无机化学第二版5 华东工学院无机化学教研组编无机化学教学参考书(1).高等教育出版社.1983年6 尹敬执,申泮文.基础无机化学(下册).人民教育出版社,19807 林平娣. 无机化学热力学M.北京:北京师范大学出版社,19868 人民教育出版社化学室.化学(必修)M.北京:人民教育出版社,19959甘志龙,王宁

20、兴.热力学在无机化学中的应用 枣庄师专学报1995年第2期10阴健.热力学在无机化学中的应用;教育学院学报(自然科学版) 第14卷 增刊1,2000年6月致谢本文的完成既是笔者孜孜不倦努力的结果,更是导师胡树青教授亲切关怀和悉心指导的结果。在整个论文的选题、研究和撰写过程中,导师都给了我精心的指导、热忱的鼓励和支持,他多次询问论文的写作进程,多次为我批阅文章并提出修改意见,他的精心点拨为我开拓了研究视野,修正了写作思路,对论文的完善和质量的提高起到了关键性的作用。另外,导师严谨求实的治学态度、一丝不苟的工作作风和高尚的人格魅力,都给了学生很大感触,使学生终生受益。在此,学生谨向导师致以最真挚的

21、感激和最崇高的敬佩之情。另外,我还需要特别感谢胡树青教授等任教老师对我多年的教育和培养之恩。俗话说:“教师是太阳底下最光辉的事业”。在您们身上,我看到了这句话的真谛,您们谆谆的教导,伟大的人格和无私奉献的精神,让我终生难忘,永远鞭策我前进。在此,我要向诸位老师深深地鞠上一躬。再者,还要感谢四年来在学习和生活中所有给予我关心、支持和帮助的老师和同学们。特别是我寝室的兄弟们,四年来我们一起学习、一起玩耍,共同度过了太多的美好时光。我们始终是一个团结、友爱、积极向上的集体。“天下没有不散的宴席”,在我们即将分离的时刻,我别无他话,衷心的祝愿大家一路走好、前程似锦、一生平安幸福。最后,感谢我的爸爸妈妈,感谢您们赐予我生命,感谢您们二十多年来对我的养育之恩,更感谢您们不管多苦多难对我学业始终如一的理解与支持。向百忙之中抽出时间审稿和参加本论文答辩的老师致以深深的谢意。向您们说一声:敬爱的老师,您辛苦了!

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2