ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:36.37KB ,
资源ID:4820986      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-4820986.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(带式输送机及其牵引系统机械外文文献翻译中英文翻译外文翻译.docx)为本站会员(b****4)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

带式输送机及其牵引系统机械外文文献翻译中英文翻译外文翻译.docx

1、带式输送机及其牵引系统机械外文文献翻译中英文翻译外文翻译 JINGGANGSHAN UNIVERSITY外文翻译题 目 调整送料量输送装置设计学 院 机电工程学院 专 业 机械制造及其自动化 班 级 机制11本(1)班 学 号 110611014 姓 名 蓝善龙 指导教师 康志成教授 起讫时间 2014.12.12015.4 教 务 处 印 制AbstractBulkmaterialtransportationrequirementshavecontinuedtopressthebeltconveyorindustrytocarryhighertonnagesoverlongerdistanc

2、esandmorediverseroutes.Inorderkeepup,significanttechnologyadvanceshavebeenrequiredinthefieldofsystemdesign,analysisandnumericalsimulation.Theapplicationoftraditionalcomponentsinnon-traditionalapplicationsrequiringhorizontalcurvesandintermediatedriveshavechangedandexpandedbeltconveyorpossibilities.Ex

3、amplesofcomplexconveyingapplicationsalongwiththenumericaltoolsrequiredtoinsurereliabilityandavailabilitywillbereviewed.Belt Conveying Systems Development of driving systemAmong the methods of material conveying emploved, belt conveyors play a very imporient part in the reliable carrying of material

4、over long distances at competitive cost. Conveyor systems have become larger and more complex and drive systems have a l so been going through a process of evolution and will continue to do so. Nowadays, bigger belts require more power and have brought the need for larger individual drives as well a

5、s multiple drives such as 3 drives of 750 kW for one belt(this is the case for the conveyor drives in Chengzhuang Mine). The ability to control drive acceleration torque is critical to belt conveyors performance. A efficient drive system should be able to provide smooth, soft starts while maintainin

6、g belt tensions within the specified safe limits. For load sharing on multiple drives. torque and speed control are also considerations in the drive systems design. Due to the advances in conveyor drive control technology, at present many more reliable. Cost-effective and performance- driven conveyo

7、r drive systems covering a wide range of power are available for customers choices1. 1 Analysis on conveyor drive technologies 1. 1 Direct drives Full-voltage starters. With a full-voltage starter design, the conveyor head shaft is direct-coupled to the motor through the gear drive. Direct 8 full-vo

8、ltage starters are adequate for relatively low-power, simple- Profile conveyors. With direct full-voltage starters. no control is provided for various conveyor loads and. depending on the ratio between full- and no-load power requirements, empty starting times can be three or our times faster than f

9、ull load. The maintenance-free starting system is simple, low-cost and very reliable. However, they cannot control starting torque and maximum stall torque; therefore. they are limited to the low-power, simple-profile conveyor belt drives. Reduced-voltage starters. As conveyor power requirements inc

10、rease,controlling theapplied motor torque during the acceleration period becomes increasingly important. Because motor torque is a function of voltage, motor voltage must be controlled. This can be achieved through reduced-voltage starters by employing a silicon controlled rectifier (SCR). A common

11、starting method with SCR reduced-voltage starters is to apply low voltage initially to take up conveyor belt slack. and then to apply a timed linear ramp up to full voltage and belt speed. However, this starting method will not produce constant conveyor belt acceleration. When acceleration is comple

12、te. the SCRs, which control the applied voltage to the electric motor. are locked in full conduction, providing full-line voltage to the motor. Motors with higher torque and pull -vp torque, can providebetterstarting torque when combined with the SCR starters, which are available in sizesup to 750 K

13、W. Wound rotor induction motors. Wound rotor induction motors are 9 connected directly to the drive system reducer and are a modified onfiguration of a standard AC induction motor. By inserting resistance in series with the motors rotor windings. the modified motor control System controls motor torq

14、ue. For conveyor starting, resistance is placed in series with the rotor for low initial torque. As the conveyor accelerates,the resistance is reduced slowly to maintain a constant acceleration torque. On multiple-drive systems. an external slip resistor may be left in series with the rotor windings

15、 to aid in load sharing .the motor systems have a relatively simple a design.However,the control systems for these can be highly complex, because they are based on computer control of the resistance switching. Today, the majority of control systems are custom designed to meet a conveyor systems part

16、icular specifications. Wound rotor motors are appropriate for systems requiring more than 400KW. DC motor. DC motors. available from a fraction of thousands of KW,are designed to deliver constant torque below base speed and constant KW above base speed to themaximum allowable revolutions per minute

17、(r/min). with the majority of conveyor drives, a .DC shunt wound motor is used. Wherein the motors rotating armature is connected externally. The most common technology for controlling DC drives is a SCR device. which allows for continual variable-speed operation. The DC drive system is mechanically

18、 simple, but can include complex custom-designed electronics to monitor and control the complete system. this system option is expensive in comparison to othersoft-start systems. but it is a reliable, cost-effective drive in applications in which torque,load sharing and variable speed are primary co

19、nsiderations. DC motors generally are used with higher-power conveyors, 10 including complex profile conveyors with multiple-drive systems, booster tripper systems needing belt tension control and conveyors requiring a wide variable-speed range.1. 2 Hydrokinetic coupling 2. Hydrokinetic couplings, c

20、ommonly referred to as fluid couplings. are composed of three basic elements; the driven impeller, which acts as a centrifugal pump; the driving hydraulic turbine known as the runner and a casing that encloses the two power components. Hydraulic fluid is pumped from the driven impeller to the drivin

21、g runner, producing torque at the driven shaft. Because circulating hydraulic fluid produces the torque and speed, no mechanical connection is required between the driving and driver shafts.The power produced by this coupling is based on the circulated fluids amount and density and the torque in pro

22、portion to input speed. Because the pumping action within the fluid coupling depends on centrifugal forces. the output speed is less than the input speed. Referred to as slip. this normally is between 1% and 3%. Basic hydrokinetic couplings are available in configurations from fractional to several

23、thousand KW. Fixed-fill fluid couplings. Fixed-fill fluid couplings are the most commonly usedsoft-start devices for conveyors with simpler belt profiles and limited convex/concave sections. They are relatively simple,low-cost,reliable,maintenance free devices that provide excellent soft starting re

24、sults to the majority of belt conveyors in use today. Variable-fill drain couplings. Drainable-fluid couplings work on the same principle as fixed-fill couplings. The couplings 11 impellersare mounted on the AC motor and therunners on the driven reducer high-speed shaft. Housing mounted to the drive

25、 base encloses the working circuit. The couplings rotating casing contains bleed-off orifices that continually allow fluid to exit the working circuit into a separate hydraulic reservoir. Oil from the reservoir is pumped through a heat exchanger to a solenoid-operated hydraulic valve that controls t

26、he filling of the fluid coupling. To control the starting torque of a single-drive conveyor system, the AC motor current must be monitored to provide feedback to the solenoid control valve. Variable fill drain couplings are used in medium to high-kw conveyor systems and are available in sizes up to

27、thousands of kw.The drives can be mechanically complex and depending on the control parameters. the system can be electronically intricate. The drive system cost is medium to high,depending upon size specified. Hydrokinetic scoop control drive. The scoop control fluid coupling consists of the three

28、standard fluid coupling cmponents: a driven impeller, a driving runner and a casing that encloses the working circuit. The casing is fitted with fixed orifices that bleed a predetermined amount of fluid into a reservoir. When the scoop tube is fully extended into the reservoir, the coupling is 100 p

29、ercent filled. The scoop tube, extending outside the fluid coupling, is positioned using an electric actuator to engage the tube from the fully retracted to the fully engaged position. This control provides reasonably smooth acceleration rates. to but the computer-based control system is very comple

30、x. Scoop control couplings are Variable-frequency control(VFC) Variable frequency control is also one of the direct drive methods. the emphasizing discussion about it here is because that it has so unique characteristic and so good performance compared with other driving methods for belt conveyor. V

31、FC devices Provide variable frequency and voltage to the induction motor, resulting in an excellent starting torque and acceleration rate for belt conveyor drives. VFC drives. available from fractional to several thousand (kW),are electronic controllers that rectify AC line power to DC and, through

32、an inverter, convert DC back to AC with frequency and voltage control. VFC drives adopt vector control or direct torquecontrol(DTC)technology, and can adopt different operating speeds according to different loads. VFC drives can make starting or stalling according to any given S-curves realizing the automatic track for starting or stalling curves. VFC drives provide excellent speed and torque control for starting conveyor belts. and can also be designed to provide load sharing for multiple drives. easily VFC controllers are frequently inst

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2