ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:412.46KB ,
资源ID:568127      下载积分:15 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-568127.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基于单片机实现的液位控制器设计.docx)为本站会员(聆听****声音)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

基于单片机实现的液位控制器设计.docx

1、基于单片机实现的液位控制器设计姓名:学号:摘 要3一引 言3二. 系统设计方案比较说明3三水箱液位系统建模4四. 系统硬件和软件的实现54.1 PID 控制54.1.1 PID 控制原理54.1.2 模糊 PID 控制64.1.3 模糊控制器的设计74.2 硬件的设计104.2.1 原理框图104.2.2 单片机104.2.3 传感器104.2.4 键盘电路114.2.5 液位显示电路114.2.6 AD 转换电路及控制输出124.3 软件设计13五 结 语15摘 要本文介绍一种基于单片机实现的液位控制器的设计方法,该控制器以单片机为核心, 设计出了 PID 控制系统,并通过外围硬件电路来达到

2、实现控制的目的。可根据需要设定液位控制高度,同时具备报警、高度显示等功能,由于增加了气体压力传感器,使其具有与液面不接触的特点,可用于有毒、腐蚀性液体液位的控制,具有较高的研究价值。该控制器不仅可用于学校进行教学研究,还可用于生产实际,是目前比较缺少的一种产品。关键词:传感器;AD 转换;PID 控制器;外围硬件电路一引 言随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中,为了使学生对单片机控制的智能型控制器有较深的了解。经过综合分析选择了由单片机控制的智能型液位控制器作为研究项目,通过训练充分激发学生分析问题、解决问题和综合应用所学知识的潜能。另外,液位控制在高层小区水

3、塔水位控制,污水处理设备和有毒,腐蚀性液体液位控制中也被广泛应用。通过对模型的设计可很好的延伸到具体应用案例中。工业液体的液位控制系统是工业生产中比较典型的控制应用之一,许多控制系统的模型与此类似。以往在该领域比较成熟的控制算法是 PID 算法。由于过程控制系统执行机构的复杂性、变量间的关联性和非线性等原因,找到一组适合整个系统大范围控制的合适的 PID 参数相当困难,这对要求控制范围宽、响应快且连续可调系统就显得力不从心了。另外液位控制对象一般具有纯滞后、大惯性,因此液位变化缓慢,系统一般呈非线性2。用常规 PID 控制器来控制时,其效果不理想,系统响应的调节时间较长。模糊控制与 PID 控

4、制相结合则显示了巨大的优越性。模糊 PID 控制器既具有模糊控制灵活且适应性强的优点,又具有常规PID 控制精度高的特点,在工业控制中得到广泛应用。二. 系统设计方案比较说明对于液位进行控制的方式有很多,而应用较多的主要有 2 种,一种是简单的机械式控制装置控制,一种是复杂的控制器控制方式。两种方式的实现如下:(1) 简单的机械式控制方式。其常用形式有浮标式、电极式等,这种控制形式的优点是结构简单,成本低廉。存在问题是精度不高,不能进行数值显示,另外很容易引起误动作, 且只能单独控制,与计算机进行通信较难实现。(2) 复杂控制器控制方式。这种控制方式是通过安装在水泵出口管道上的压力传感器, 把

5、出口压力变成标准工业电信号的模拟信号,经过前置放大、多路切换、AD 变换成数字信号传送到单片机,经单片机运算和给定参量的比较,进行 PID 运算,得出调节参量; 经由 DA 变换给调压变频调速装置输入给定端,控制其输出电压变化,来调节电机转速,以达到控制水箱液位的目的。针对上述 2 种控制方式,以及设计需达到的性能要求,这里选择第二种控制方式。最终形成的方案是,利用单片机为控制核心,设计一个对供水箱水位进行监控的系统。根据监控对象的特征,要求实时检测水箱的液位高度,并与开始预设定值做比较,由单片机控制固态继电器的开断进行液位的调整,最终达到液位的预设定值。检测值若高于上限设定值时,要求报警,断

6、开继电器,控制水泵停止上水;检测值若低于下限设定值,要求报警, 开启继电器,控制水泵开始上水。现场实时显示测量值,从而实现对水箱液位的监控。三水箱液位系统建模图 1 为过程控制实验室的液位过程控制系统的原理图。A 为液罐的截面面积, h 为液位高度, h0 为实际液位高度, Qo 为系统输出流量, Qi 为系统输入流量。利用水泵将储水槽中的水输出,通过电动调节阀调节进水流量,采用闭环串级控制上、下水箱的液位,使水箱液位保持恒定,液位变送器对上、下水箱液位进行实时测量。图 3.1 水箱液位控制图根据质量守恒定律:假定阀的开度为 x(t)当阀全开时,单位时间流过阀的液量为则根据流体学有式(3)中

7、m 是罐装阀的结构决定的系数,对于固定阀 m 值不变,将式(2)、(3)代入式(1)中有用泰勒公式线性式(3)化为经过拉氏变换得到系统的传递函数为1= 1在工程应用中 2 A H 0因此系统的控制模型为考虑到调节阀与实际水箱的入口有一段距离,滞后时间 t=l/v,故数学模型写为这样就将该系统的过程数学模型的结构确定了,是含纯滞后的一阶惯性环节,也是控制系统中比较典型的结构。四. 系统硬件和软件的实现4.1 PID 控制4.1.1 PID 控制原理在模拟控制系统中,控制器最常用的控制规律是 PID 控制。常规 PID 控制系统原理框图如图 4.1 所示。系统由模拟 PID 控制器和被控对象组成。

8、图 4.1 模拟 PID 控制系统原理框图PID 控制器是一种线性控制器,它根据给定值 r(t)与实际输出值 y(t)构成控制偏差:将偏差的比例(P)、积分(I)和微分(D)通过线性组合构成控制量,对被控对象进行控制,故称 PID 控制器。其控制规律为或写成传递函数形式式中 k p 比例系数; Ti 积分时间常数; Td 微分时间常数; 简单说来,PID 控制器各校正环节的作用如下:1. 比例环节即时成比例地反映控制系统的偏差信号 e(t),偏差一旦产生,控制器立即产生控制作用,使被控制量朝着减小误差的方向变化,控制作用的强弱取决于比例控制系数。比例控制的缺点是对于具有自平衡性的被控对象存在静

9、差。如果将系数调整过大来减少静差会导致动态性能变坏,甚至会使闭环系统不稳定。2. 积分环节积分控制的作用是,只要系统有误差存在,积分控制器就不断地积累,输出控制量, 以消除误差。因而,只要有足够的时间,积分控制将能完全消除误差,使系统误差为零, 从而消除稳态误差。积分作用太强会使系统超调加大,甚至使系统出现振荡。积分作用具有滞后特性,积分控制作用太强会使控制的动态性能变差,以至于使系统不稳定。积分作用的强弱取决于积分时间常数Ti , Ti 越大,积分作用越弱,反之则越强。3. 微分环节能反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大之前,在系统中引 入一个有效的早期修正信号,从而加

10、快系统的动作速度,减少调节时间。对误差进行微分, 并能在偏差比例控制能迅速反应误差,从而减小稳态误差。微分控制可以减小超调量,克 服振荡,使系统的稳定性提高,同时加快系统的动态响应速度,减小调整时间,从而改善 系统的动态性能。应用 PID 控制,必须适当地调整比例放大系数 k p ,积分时间Ti 和微分时间Td ,使整个控制系统得到良好的性能。4.1.2 模糊 PID 控制模糊控制器都是以系统误差 E 和误差变化 EC 为输入语句变量,因此它具有类似于常规 PD 控制器的作用,采用该类模糊控制器的系统有可能获得良好的动态特性,而静态性能不能令人满意,无法消除静态误差。由线性控制理论可知,积分控

11、制作用能消除稳态误差,但动态响应效果不是很好,比例控制作用动态响应快,而比例积分控制作用既能获得较高的稳态精度,又能具有较高的动态响应。因此,把 PID 控制策略引入模糊控制器,构成模糊 PID 控制,是改善模糊控制器稳态性能的一种途径。水位控制具有纯滞后和容量滞后的现象,水位上升时间长且并不是等速的。由于上升 时间长,如果积分参数过小,容易形成大的静差,而积分常数过大又容易引起大的超调及 振荡;的比例增益不利于系统的上升作用,但大的比例增益又会造成震荡频率、振幅很大, 使其抗干扰能力很弱,稳定性很差。为此,设计了一种模糊自调整 PID 控制器,在整个控制过程中,根据 PID 三个参数对系统不

12、同阶段控制的要求,随时调整各参数。使用 PID 主要是基于系统的误差,但由于它的控制性能依赖于 PID 控器的三个参数以及系统数学模型的精确性,且其控制参数对系统的参数变比较敏感,对于非线性系统,传统的 PID 控制的自适应性、鲁棒性等性能往不能满足系统性能要求。模糊控制由于具有算法简单、易于掌 握,且无知道被控对象的精确模型,具有较好动态特性,以语言描述人类知识,把表示为 模糊规则或关系,具有推理、利用知识库,把知识与状态相结合起决定控制行为等优点, 已经得到了广泛地应用。与 PID 结合可以运用人类识、具有推理功能,可以改变 PID 的参数,使 PID 系统具有较强自适应性模糊 PID 控

13、制器是将模糊控制与常规 PID 控制相结合的产物。它吸收了模控制和常规 PID 控制的优点模糊参数自整定 PID 控制利用模糊控制方法将操作人员的调整经验作知识存入计算机中,根据现场实际情况,计算机能自动调整 PID 参数。这控制器把古典的 PID 控制与先进的专家系统相结合,只需将操作人员(专长期实践积累的经验知识用控制规则模型化,然后运用推理便可对 PID 参实现最佳调整。研究表明,模糊 PID 不仅可以解决简单线性系统的控制问题,而且于许多复杂非线性、高阶、时延等系统具有很好的效果。模糊 PID 控制实际上是一种变增益或自调节 PID。4.1.3 模糊控制器的设计设理想的液位为 h0,实

14、际测得的水位高度为 h,选择液位差为 e=h=h0-h。将偏差 e 作 为观测值,将偏差和偏差变化率分别记为 E 与 Ec,其论域均取为-3-2-10123, KP、KI、KD 模糊论域取-2-1012,E 与 Ec 的模糊子集记为NBNM NS ZO PSPMPB,分别表示负大、负中、负小、零、正小、正中、正大。隶属度函数形状均选三角形,如图 4.2 所示。PID 参数模糊自整定是找出 PID 3 个参数与 E 和 Ec 模糊关系。在运行中不断检测 E 和Ec,根据模糊控制原理来对 3 个参数进行在线修改,以满足不同的 E 和 Ec 时对控制参数的要求,使系统具有较好的静动态性能的要求。针对

15、不同的 e 和 e,总结出了一套 KP、KI 与 KD 整定方法。图 4.2 E 、 Ec 与 KP 、 KI 、 KD 模糊子集(1) 当|e|较大时,为加快响应速度应取较大的 KP,同时为了避免 e 的瞬间变化可能出现的微分饱和超出控制范围应取较小 KP。为避免出现较大的超调,对积分作用加以限制,取KI=0。(2) 当|e|和|e|中等时,为使系统具有较小的超调,KP 应取得小些。此时 KD 的取值对系统的影响较大应取适中一些的取值要适当。(3) 当|e|较小时,为使系统具有较好的稳定性能,应取较大的 KP 和 KI,KD 的取值要恰当,以避免在平衡点附近出现振荡。同时为避免系统在设定值附

16、件振荡,|e|较大时 KP 可取小一些。根据 3 个参数之间的相互作用关系及控制规律,建立了合适的模糊控制规律表。如表1、2、3 所示。模糊推理采用 ifthen 合成规则, if e is NB and ec is NB thenKP is NB KI isPBKD is NSif e is PB and ec is PB thenKP is ZO KIis ZO KDis PB,共 49条规则。根据偏差与偏差变化率得出相应的 KP 、 KI 、 KD ,再乘以相应得量化因子,从而得出 PID 实时参数 KP 、 KI 、 KD 。4.2 硬件的设计4.2.1 原理框图原理框图如图 4.3

17、所示。图 4.3 控制器原理图基于单片机实现的液位控制器是以 AT89C51 芯片为核心,由键盘、数码显示、AD 转换、传感器,电源和控制部分等组成。工作过程如下:水箱(水塔)液位发生变化时,引起 连接在水箱(水塔)底部的软管管内的空气气压变化,气压传感器在接收到软管内的空气气 压信号后,即把变化量转化成电压信号;该信号经过运算放大电路放大后变成幅度为 05 V 标准信号,送入 AD 转换器,AD 转换器把模拟信号变成数字信号量,由单片机进 行实时数据采集,并进行处理,根据设定要求控制输出,同时数码管显示液位高度。通过 键盘设置液位高、低和限定值以及强制报警值。该系统控制器特点是直观地显示水位

18、高度, 可任意控制水位高度。液位控制器的硬件主要包括由单片机、传感器(带变送器)、键盘电路、数码显示电路、AD 转换器和输出控制电路等。4.2.2 单片机单片机采用由 Atmel 公司生产的双列 40 脚 AT89C51 芯片,如图 4.4 所示。其中,P0 口用于 AD 转换和显示;P1 口连接一个 35 的键盘;P2 口用于控制电磁阀和水泵动作; P3 口用于上、下限指示灯,报警指示灯以及用于读写控制和中断等。图 4.4 是 AT89C51 芯片的引脚功能说明。4.2.3 传感器传感器使用 SY 一 9411LD 型变送器,它内部含有 1 个压力传感器和相应的放大电路。压力传感器是美国 S

19、M 公司生产的 5552 型 OEM 压阻式压力传感器,其有全温度补偿及标定(O70),传感器经过特殊加工处理,用坚固的耐高温塑料外壳封装。其引脚分布如图 4.5 所示。1 脚为信号输出(一);2 脚为信号输出(一);3 脚为激励电压;4 脚为地;5 脚为信号输出(+);6 脚为信号输出(+)。在水箱底部安装 1 根直径为 5 mm 的软管,一端安装在水箱底部;另一端与传感器连接。水箱水位高度发生变化时,引起软管内气压变化,然后传感器把气压转换成电压信号,输 送到 AD 转换器。图 4.4 AT89C51 芯片外形结构和引脚分布图图 4.5 SY-9411L-D 型变送器引脚结构图4.2.4

20、键盘电路P1 口作为键盘接口,连接一个 44 键盘。结构上采用行列方式,可定义键盘布局。结构如图 4.6 所示。4.2.5 液位显示电路液位显示采用数码管动态显示,范围从 0999(单位可自定),选择的数码管是 7 段共阴极连接,型号是 LDSl8820。在这里使用到了 74LS373,它是一个 8 位的 D 触发器,在单片机系统中经常使用,可以作地址数据总线扩展的锁存器,也可以作为普通的 LED 的驱动器件,由于单独使用 HEF4511B 七段译码驱动显示器来完成数码管的驱动显示,因此74LS373 在这里只用作扩展的缓冲,图 4.7 是显示电路的原理图。图 4.6P1 口键盘电路结构图图

21、4.7 显示电路原理图图 4.8A/D 转换电路原理图4.2.6 AD 转换电路及控制输出AD 转换电路在控制器中起主导作用,用它将传感器输出的模拟电压信号转换成单片机能处理的数字量。该控制器采用 CMOS 工艺制造的逐步逼近式 8 位 AD 转换器芯片ADC0809。在使用时可选择中断、查询和延时等待 3 种方式编制 AD 转换程序。图 4.8 是 AD 转换部分原理图,在接线时先经过运算放大器和分压电路把传感器输出的电流信号转换成电压信号,然后输入到 AD 转换器。控制输出主要有上下限状态显示、超限报警。另外在设计过程中预留了串行口,供进一步开发使用。4.3 软件设计液位控制器模型的软件设

22、计框图如图 4.9 所示。图 4.9 程序设计框图(1) 键盘程序由于键盘采用的是 44 结构,因此可使用的键有 16 个,根据需要分别定义各键,09 号为数字键,1015 号分别是确定键、修改键、移位键、加减键、取消键和复位键。程序如下:(2) A/D 转换子程序A/D 转换子程序如下:五 结 语本文设计出了一种基于 AT89C51 单片机的单水箱液位控制系统,本文首先对单水箱液位控制系统进行数学建模,然后介绍了 PID 控制及用模糊 PID 算法实现了对水箱液位的控制。在本设计的过程中我遇到了不少难题,但在自己的认真钻研和老师和同学的指导帮助下,逐一解决了这些问题。通过本设计我学到了很多,比如基于单片机实现液位控制器模型设计的关键在于硬件电路的正确构建,只有在电路准确的前提下再进行软件编程才能取得成功。在此,我要感谢给予了我帮助的同学和老师。

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2