ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:27.35KB ,
资源ID:5756984      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-5756984.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(石英晶体谐振器及石英晶体振荡器Word文档格式.docx)为本站会员(b****2)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

石英晶体谐振器及石英晶体振荡器Word文档格式.docx

1、10、 负载谐振电阻:在负载谐振频率时呈现的等效电阻。用RL表示。RLR1(1+C0/CL)211、 激励电平:晶体工作时所消耗功率的表征值。激励电平可选值有:2mW、1mW、0.5mW 、0.2mW、0.1mW、50W、20W、10W、1W、0.1W等12、 基频:在振动模式最低阶次的振动频率。13、 泛音:晶体振动的机械谐波。泛音频率与基频频率之比接近整数倍但不是整数倍,这是它与电气谐波的主要区别。泛音振动有3次泛音,5次泛音,7次泛音,9次泛音等。二、应用指南石英晶体谐振器根据其外型结构不同可分为HC-49U、HC-49U/S、HC-49U/SSMD、UM-1、UM-5及柱状晶体等。HC

2、-49U适用于具有宽阔空间的电子产品如通信设备、电视机、机、电子玩具中。HC-49U/S适用于空间高度受到限制的各类薄型、小型电子设备及产品中。HC-49U/SSMD为准表面贴装型产品,适用于各类超薄型、小型电脑及电子设备中。柱状石英晶体谐振器适用于空间狭小的稳频计时电子产品如计时器、电子钟、计算器等。UM系列产品主要应用于移动通讯产品中,如BP机、移动手机等。石英晶体谐振器主要用于频率控制和频率选择电路。本指南有助于确保不出现性能不满意、成本不合适及可用性不良等现象。1、 振动模式与频率关系:基频 135MHz3次泛音 1075MHz 5次泛音 50150MHz7次泛音 100200MHz9

3、次泛音 150250MHz2、 晶体电阻:对于同一频率,当工作在高次泛音振动时其电阻值将比工作在低次振动时大。信号源+电平表功能由网络分析仪完成Ri、R0:仪器内阻:一般为50R1-滤波器输入端外接阻抗,阻抗值为匹配阻抗减去50。R2-滤波器输出端外接阻抗,阻抗值为匹配阻抗减去50。在滤波器条件的匹配阻抗中有时有并接电容要求,应按上图连接。3、 工作温度X围与温度频差:在提出温度频差时,应考虑设备工作引起的温升容限。当对温度频差要求很高,同时空间和功率都允许的情况下,应考虑恒温工作,恒温晶体振荡器就是为此而设计的。4、 负载电容与频率牵引:在许多应用中,都有用一负载电抗元件来牵引晶体频率的要求

4、,这在锁相环回路及调频应用中非常必要,大多数情况下,这个负载电抗呈容性,当该电容值为CL时,则相对负载谐振频率偏移量为:DL=C1/2(C0+CL)。而以CL作为可调元件由DL1调至DL2时,相对频率牵引为DL1,L2= C1(CL1CL2)/2(C0+CL1)(C0+CL2)。5、 负载电容的选择:晶体工作在基频时,其负载电容的标准值为20PF、30PF、50PF、100PF。而泛音晶体经常工作在串联谐振,在使用负载电容的地方,其负载电容值应从下列标准值中选择:8PF、12PF、15PF、20PF、30PF。6、 激励电平的影响:一般来讲,AT切晶体激励电平的增大,其频率变化是正的。激励电平

5、过高会引起非线性效应,导致可能出现寄生振荡;严重热频漂;过应力频漂及电阻突变。当激励电平过低时则会造成起振阻力不易克服、工作不良及指标的不稳定。7、 滤波电路中的应用:应用于滤波电路中时,除通常的规定外,更应注意其等效电路元件的数值和误差以及寄生响应的位置和幅度,由于滤波晶体设计的特殊性,所以用户选购时应特别说明。石英晶体谐振器的振动实质上是一种机械振动实际上石英晶体谐振器可以被一个具有电子转换性能的两端网络测出这个回路包括L1 C1 同时C0 作为一个石英晶体的绝缘体的电容被并入回路与弹性振动有关的阻抗R1 是在谐振频率时石英晶体谐振器的谐振阻抗(见图1)石英晶体作为谐振器在使用时要求其谐振

6、频率在温度发生变化时保持稳定温频特性与切割角有关每个石英晶体具有结晶轴晶体切割是按其振动模式沿垂直于结晶轴的角度切割的典型的晶体切割和温频特性(见图2)AT 型石英晶体谐振器的温度特性目前大多用三次曲线表示(见图3) 一个石英晶片在所需要的频率X围已满足的情况下在某一角度被切割以达到要求的工作温度X围当然实际上即使在成功的操作中也会有一些由于切割和磨光精确性不够而造成的角度散布由此操作的精确度需要提高在图4 中可以看到频率公差和生产难度等级的关系负载电容CL 是组成振荡电路时的必备条件在通常的振荡电路中石英晶体谐振器作为感抗而振荡电路作为一个容抗被使用也就是说当晶体两端均接入谐振回路中振荡电路

7、的负阻抗-R 和电容CL 即被测出这时这一电容称为负载电容负载电容和谐振频率之间的关系不是线性的负载电容小时频率偏差量大当负载电容提高时频率偏差量减小当振荡电路中的负载电容减少时谐振频率发生较大的偏差甚至当电路中发生一个小变化时频率的稳定性就受到巨大影响负载电容可以是任意值但10-30PF 会更佳Equivalent Circuit of Crystal Oscillation Circuit (晶体振荡电路中的等效电路)在振荡电路中石英晶体谐振器作为感抗被使用石英晶体谐振器和振荡电路的关系如图5 所示为提高振荡电路中的起振条件须提高振荡电路中的负阻抗而电路中没有足够的负阻抗偏差则较难起振在振

8、荡电路中负阻抗的值应达到谐振阻抗的5-10 倍在振荡电路中负载电容的中心值其决定谐振频率的绝对值和其变化X围谐振频率的良好调整X围应保持在最佳值Oscillation Circuit (振荡电路)一个由石英晶体谐振器组成的典型振荡电路如图7 所示Frequency (MHZ) Cg, Cd (PF) Rd (V) CL (PF)3-4 27 5.6K 164-5 27 3.9K 165-6 27 2.7K 166-8 18 2.7K 128-12 18 1.8K 1212-15 18 1.0K 1215-20 15 1.0K 1220-25 12 660 10Spurious Resonanc

9、es (寄生响应)所有石英谐振器均有寄生在主频率之外的不期望出现的振荡响应他们在等效电路图中表现为附加的以R1 L1C1 形成的响应回路寄生响应的阻抗RNW 与主谐振波的阻抗Rr 的比例通常以衰减常数dB 来表示,并被定义为寄生衰减aNW=-20 lg对于振荡用晶体,3 至6dB 是完全足够的.对于滤波用晶体,通常的要求是超过40dB. 这一规格要求只有通过特殊设计工艺并使用数值非常小的动态电容方能达到.可达到的衰减随着频率的上升和泛音次数的增加而减小. 通常的平面石英晶片谐振器比平凸或双面凸晶片谐振器的寄生衰减要良好. 在确定寄生响应参数时,应同时确定一个可接受的寄生衰减水平以及寄生频率与主

10、振频率的相对关系.在AT 切型中,对于平面晶片,不和谐的响应只存在于主响应的+40 至+150KHZ 之间,对于平凸或双面凸的晶片,寄生则在+200 至+400KHZ 之间.在以上的测量方法中,寄生响应衰减至20 至30dB 时是可以测量的,对于再高一些的衰减.C0 的补偿是必需的.Drive Level (DLD) (激励功率依赖性)石英振荡器的机械振动的振幅会随着电流的振幅成正比例地上升. 功率与响应阻抗的关系为Pc=12qR1, 高激励功率会导致共振的破坏或蒸镀电极的蒸发,最高允许的功率不应超过10mV.由于L1 和C1 电抗性的功率振荡,存在Qc=Q x Pc. 若Pc=1mV, Q=

11、100.000, Qc 则相当于100W. 由于低的Pc 功率会导致振荡幅度的超过,最终导致晶体的频率上移.随着晶体泛音次数的增加, 对于激励功率的依赖性更加显著.上图显示了典型的结果, 但是精确的预期结果还是要受到包括晶体设计和加工,机械性晶片参数,电极大小,点胶情况等的影响.可以看出, 激励功率必须被谨慎地确定,以使晶体在生产中和使用中保持良好的关系.当今,一个半导体振荡回路的激励功率一般为0.1mV,故在生产晶体时也一般按0.1mV 进行.一个品质良好的晶体可以容易地起振,其频率在自1nW 逐步增加时均能保持稳定.现在, 晶体两端的功率很低的半导体回路也可以在很低的功率的情况下工作良好.

12、上图显示了一个对激励功率有或无依赖性的晶体的工作曲线的比较.晶体存在蒸镀电极不良,晶片表面洁净度不足, 都会存在如图所示的在低功率时出现高阻抗的情况, 这一影响称为激励功率依赖性(DLD). 通常生产中测试DLD 是用110mV 测试后再用1mV 测试, 发生的阻抗变化可作为测试的标准. 很显然, 在增加测试内容会相当大的提高晶体生产的成本.利用适当的测试仪器可以很快地进行DLD 极限值的测定,但是只能进行合格/不合格的测试.IEC 草案248 覆盖了根据(DIV)IEC444-6 制定的激励功率的依赖性的测量方法.提供具有充分的反馈和良好脉冲的最优化的振荡回路,可以极大的消除振荡的内部问题.

13、Notes for Crystal Unit Applications(石英晶体谐振器使用的注意点)(1)与HC-49/U 相比,小的石英晶体谐振器(如HC-49U/S, HC-49USM, UM-1, 49T) 都是低激励功率(100um 或以下). 在使用之前,须在一个实际的安装电路中检验晶体电流(见图5).XX市格利特电子XXTEL:+86-0 FAX:+86-1 .szgreat. :salesszgreat.(2)须检查电路的负阻抗,负阻抗的认可见图8.负阻抗应是谐振阻抗的5 倍左右.(3)当使用C-MOS 振荡器时(见图7)线路图中的Rd 是必要的. 如果Rd 达到要求, 激励功率

14、会保持在规定值内,那么谐振频率也就稳定了.(4)在10-30PF 内,可以用Cg 和Cd, 如果Cg 和Cd30PF, 振荡会被电路现象轻易的影响, 激励功率会升高,或负阻抗会减小, 最终导致振荡的不稳定.(5)晶体振荡电路的设计应尽量简短.(6)电路和线路板间的杂散电容应尽量被减少.(7)尽量避免晶体振荡电路穿过其他电路.(8)如果电路用IC 方式,而且IC 制造各不相同,那么频率, 激励功率, 负阻抗须被确认.(9)泛音振荡电路还需要附加的参考.摘要:石英晶体振荡器在无线系统等应用领域中提供频率基准,是目前其它类型的振荡器尚不能替代的。本文介绍了TCXO、VCXO和OCXO等几类晶体振荡器

15、的结构、特点、发展现状及其在移动通信等领域的应用。关键词:石英晶体振荡器一、引言尽管石英晶体振荡器的应用已有几十年的历史,但因其具有频率稳定度高这一特点,故在电子技术领域中一直占有重要的地位。尤其是信息技术(IT)产业的高速发展,更使这种晶体振荡器焕发出勃勃生机。石英晶体振荡器在远程通信、卫星通信、移动系统、全球定位系统(GPS)、导航、遥控、航空航天、高速计算机、精密计测仪器及消费类民用电子产品中,作为标准频率源或脉冲信号源,提供频率基准,是目前其它类型的振荡器所不能替代的。小型化、片式化、低噪声化、频率高精度化与高稳定度及高频化,是移动和天线寻呼机为代表的便携式产品对石英晶体振荡器提出的要

16、求。事实上石英晶体振荡器在发展过程中,也面临像频率发生器这类电路的潜在威胁和挑战。此类振荡器只有在技术上不断创新,才能延长其寿命周期,在竞争中占有优势。二、石英晶体振荡器基本结构及工作原理石英晶体振荡器分非温度补偿式晶体振荡器、温度补偿晶体振荡器(TCXO)、电压控制晶体振荡器(VCXO)、恒温控制式晶体振荡器(OCXO)和数字化/p补偿式晶体振荡器(DCXO/MCXO)等几种类型。其中,无温度补偿式晶体振荡器是最简单的一种,在日本工业标准(JIS)中,称其为标准封装晶体振荡器(SPXO)。现以SPXO为例,简要介绍一下石英晶体振荡器的结构与工作原理。石英晶体,有天然的也有人造的,是一种重要的

17、压电晶体材料。石英晶体本身并非振荡器,它只有借助于有源激励和无源电抗网络方可产生振荡。SPXO主要是由品质因数(Q)很高的晶体谐振器(即晶体振子)与反馈式振荡电路组成的。石英晶体振子是振荡器中的重要元件,晶体的频率(基频或n次谐波频率)及其温度特性在很大程度上取决于其切割取向。石英晶体谐振器的基本结构、(金属壳)封装及其等效电路如图1所示。只要在晶体振子板极上施加交变电压,就会使晶片产生机械变形振动,此现象即所谓逆压电效应。当外加电压频率等于晶体谐振器的固有频率时,就会发生压电谐振,从而导致机械变形的振幅突然增大。在图1(c)所示的晶体谐振器的等效电路中,Co为晶片(a)石英晶体振于的结构(b

18、)金属壳封装示图(c)等效电路与金属板之间的静电电容;L、C为压电谐振的等效参量;R为振动磨擦损耗的等效电阻。石英晶体谐振器存在一个串联谐振频率fos(1/2),同时也存在一个并联谐振频率fop(1/2)。由于Co C,fop与fos之间之差值很小,并且R OL,R 1/OC,所以谐振电路的品质因数Q非常高(可达数百万),从而使石英晶体谐振器组成的振荡器频率稳定度十分高,可达1012/日。石英晶体振荡器的振荡频率既可近似工作于fos处,也可工作在fop附近,因此石英晶体振荡器可分串联型和并联型两种。用石英晶体谐振器及其等效电路,取代LC振荡器中构成谐振回路的电感(L)和电容(C)元件,则很容易

19、理解晶体振荡器的工作原理。SPXO的总精度(包括起始精度和随温度、电压及负载产生的变化)可以达到25ppm。SPXO既无温度补偿也无温度控制措施,其频率温度特性几乎完全由石英晶体振子的频率温度特性所决定。在070X围内,SPXO的频率稳定度通常为201000ppm,SPXO可以用作钟频振荡器。三、温度补偿晶体振荡器(TCXO)TCXO是通过附加的温度补偿电路使由周围温度变化产生的振荡频率变化量削减的一种石英晶体振荡器。1 TCXO的温度补偿方式目前在TCXO中,对石英晶体振子频率温度漂移的补偿方法主要有直接补偿和间接补偿两种类型:(1)直接补偿型直接补偿型TCXO是由热敏电阻和阻容元件组成的温

20、度补偿电路,在振荡器中与石英晶体振子串联而成的。在温度变化时,热敏电阻的阻值和晶体等效串联电容容值相应变化,从而抵消或削减振荡频率的温度漂移。该补偿方式电路简单,成本较低,节省印制电路板(PCB)尺寸和空间,适用于小型和低压小电流场合。但当要求晶体振荡器精度小于1pmm时,直接补偿方式并不适宜。(2)间接补偿型间接补偿型又分模拟式和数字式两种类型。模拟式间接温度补偿是利用热敏电阻等温度传感元件组成温度电压变换电路,并将该电压施加到一支与晶体振子相串接的变容二极管上,通过晶体振子串联电容量的变化,对晶体振子的非线性频率漂移进行补偿。该补偿方式能实现0.5ppm的高精度,但在3V以下的低电压情况下

21、受到限制。数字化间接温度补偿是在模拟式补偿电路中的温度电压变换电路之后再加一级模/数(A/D)变换器,将模拟量转换成数字量。该法可实现自动温度补偿,使晶体振荡器频率稳定度非常高,但具体的补偿电路比较复杂,成本也较高,只适用于基地站和广播电台等要求高精度化的情况。2.TCXO发展现状TCXO在近十几年中得到长足发展,其中在精密TCXO的研究开发与生产方面,日本居领先和主宰地位。在70年代末汽车用TCXO的体积达20 以上,目前的主流产品降至0.4 ,超小型化的TCXO器件体积仅为0.27 。在30年中,TCXO的体积缩小了50余倍乃至100倍。日本京陶瓷公司采用回流焊接方法生产的表面贴装TCXO

22、厚度由4mm降至2mm,在振荡启动4ms后即可达到额定振荡幅度的90。金石(KSS)集团生产的TCXO频率X围为280MHz,温度从10到60变化时的稳定度为1ppm或2ppm;数字式TCXO的频率覆盖X围为0.290MHz,频率稳定度为0.1ppm(3085)。日本东泽通信机生产的TCO935/937型片式直接温补型TCXO,频率温度特性(点频15.36MHz)为1ppm/2070,在5V5的电源电压下的频率电压特性为0.3ppm,输出正弦波波形(幅值为1VPP),电流损耗不足2mA,体积1 ,重量仅为1g。PiezoTechnology生产的X3080型TCXO采用表面贴装和穿孔两种封装,

23、正弦波或逻辑输出,在5585X围内能达到0.251ppm的精度。国内的产品水平也较高,如瑞华欣科技开发XX推出的TCXO(3240MHz)在室温下精度优于1ppm,第一年的频率老化率为1ppm,频率(机械)微调3ppm,电源功耗120mw。目前高稳定度的TCXO器件,精度可达0.05ppm。高精度、低功耗和小型化,仍然是TCXO的研究课题。在小型化与片式化方面,面临不少困难,其中主要的有两点:一是小型化会使石英晶体振子的频率可变幅度变小,温度补偿更加困难;二是片式封装后在其回流焊接作业中,由于焊接温度远高于TCXO的最大允许温度,会使晶体振子的频率发生变化,若不采限局部散热降温措施,难以将TC

24、XO的频率变化量控制在0.5106以下。但是,TCXO的技术水平的提高并没进入到极限,创新的内容和潜力仍较大。3.TCXO的应用石英晶体振荡器的发展及其在无线系统中的应用(a)(b)图2移动通信机电路框图及其TCXO外观由于TCXO具有较高的频率稳定度,而且体积小,在小电流下能够快速启动,其应用领域重点扩展到移动通信系统。图2(a)为移动通信机射频(RF)电路框图。TCXO作为基准振荡器为发送信道提供频率基准,同时作为接收通道的第一级本机振荡器;另一只TCXO作为第2级本机振荡器,将其振荡信号输入到第2变频器。目前移动要求的频率稳定度为0.12.5ppm(3075),但出于成本上的考虑,通常选

25、用的规格为1.52.5ppm。移动用1220MHz的TCXO代表性产品之一是VCTCXO201C1,采用直接补偿方式,外观如图2(b)所示,由日本金石(KSS)公司生产。四、电压控制晶体振荡器(VCXO)电压控制晶体振荡器(VCXO),是通过施加外部控制电压使振荡频率可变或是可以调制的石英晶体振荡器。在典型的VCXO中,通常是通过调谐电压改变变容二极管的电容量来“牵引”石英晶体振子频率的。VCXO允许频率控制X围比较宽,实际的牵引度X围约为200ppm甚至更大。如果要求VCXO的输出频率比石英晶体振子所能实现的频率还要高,可采用倍频方案。扩展调谐X围的另一个方法是将晶体振荡器的输出信号与VCX

26、O的输出信号混频。与单一的振荡器相比,这种外差式的两个振荡器信号调谐X围有明显扩展。在移动通信基地站中作为高精度基准信号源使用的VCXO代表性产品是日本精工爱普生公司生产的VG2320SC。这种采用与IC同样塑封的4引脚器件,内装单独开发的专用IC,器件尺寸为12.6mm7.6mm1.9mm,体积为0.19 。其标准频率为1220MHz,电源电压为3.00.3V,工作电流不大于2mA,在2075X围内的频率稳定度1.5ppm,频率可变X围是2035ppm,启动振荡时间小于4ms。金石集团生产的VCXO,频率覆盖X围为10360MHz,频率牵引度从60ppm到100ppm。VCXO封装发展趋势是

27、朝SMD方向发展,并且在电源电压方面尽可能采用3.3V。日本东洋通信机生产的TCO947系列片式VCXO,早在90年代中期前就应用于汽车系统。该系列VCXO的工作频率点是12.8MHz、13MHz、14.5MHz和15.36MHz,频率温度特性2.5ppm/3075,频率电压特性0.3ppm/5V5,老化特性1ppm/年,内部采用SMD/SMC,并采用激光束和汽相点焊方式封装,高度为4mm。日本富士电气化学公司开发的个人手持系统(PHS)等移动通信用VCXO,共有两大类六个系列,为适应SMT要求,全部采用SMD封装。Saronix的S1318型、Vectron国际公司的J型、Champion技

28、术公司的K1526型和Fordahi公司的DFVS1KH/LH等VCXO,均是表面贴装器件,电源电压为3.3V或5V,可覆盖的频率X围或最高频率分别为32120MHz、155MHz、240MHz和150MHz,牵引度从25ppm到150ppm不等。MF电子公司生产的TVCXO系列产品尺寸为5mm7mm,曾被业内认为是外形尺寸最小的产品,但这个小型化的记录很快被打破。目前新推出的双频终端机用VCXO尺寸仅为5.8mm4.8mm,并且有的内装2只VCXO。Raltron电子公司生产的VX8000系图3压控SAW振荡器内部结构图4OCXO内部结构示图列表面贴装VCXO,采用引线封装时高度为0.185

29、英寸,采用扁平封装时仅为0.15英寸,工作频率可在1160MHz内选择,标准频率调整X围为100ppm,线性度优于10,稳定度优于25ppm/070,老化率为2ppm/年,输出负载达10个LSTTL(单价达10美元以上)。于1998年7月上市的单价2000日元的UCV4系列压控振荡器(VCO),面向全球移动通信系统(GSM)和个人数字蜂窝(PDC),可用频率X围为6501700MHz,电源电压为2.23.3V,尺寸仅为4.8mm5.5mm1.9mm,体积为0.05 ,重量0.12g。日本精工爱普生公司利用ST切型晶片制作的声表面波(SAW)谐振器(Q2000),型号为FS555,用4.8mm5.2mm1.5mm陶瓷容器包封,振荡频率X围达250500MHz,频率初始偏差为25100ppm,在2060X围内的频率稳定度是27ppm,老化率为10ppm/年。利用FS555组成的压控SAW振荡器内部结构如图3所示。欲扩大频率调节X围,可加大串联电感Lo的电感量。由于SAW谐振器的频率可达2GHz以上,为压控SAW振荡器(VCSO)的高频化提供了一条重要途径。五、恒温控制晶体振荡器(OCXO)CXO是利用恒温槽使晶体振荡器或石英晶体振子的温度保持恒定,将由周围温度变化引起的振荡器输

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2