ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:326.50KB ,
资源ID:6360055      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-6360055.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(电池参数设置Word文档下载推荐.docx)为本站会员(b****3)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

电池参数设置Word文档下载推荐.docx

1、Qit+?Q?1s).Lithium-Ion ModelDischarge Model (i* ,i)=E0?it+A?exp(?B?it).Nickel-Cadmium and Nickel-Metal-Hydride ModelCharge Model (i*+?1s),where,EBatt?= Nonlinear voltage (V)E0?= Constant voltage (V)Exp(s)?= Exponential zone dynamics (V)Sel(s)?= Represents the battery mode. Sel(s) = 0 during battery

2、discharge, Sel(s) = 1 during battery charging.K = Polarization constant (Ah?1) or Polarization resistance (Ohms)i* = Low frequency current dynamics (A)i = Battery current (A)it = Extracted capacity (Ah)Q = Maximum battery capacity (Ah)A = Exponential voltage (V)B = Exponential capacity (Ah)?1The par

3、ameters of the equivalent circuit can be modified to represent a particular battery type, based on its discharge characteristics. A typical discharge curve is composed of three sections, as shown in the next figure:The first section represents the exponential voltage drop when the battery is charged

4、. Depending on the battery type, this area is more or less wide. The second section represents the charge that can be extracted from the battery until the voltage drops below the battery nominal voltage. Finally, the third section represents the total discharge of the battery, when the voltage drops

5、 rapidly.When the battery current is negative, the battery will recharge following a charge characteristic as shown below:Note that the parameters of the model are deduced from discharge characteristics and assumed to be the same for charging.The Exp(s) transfer function represents the hysteresis ph

6、enomenon for the Lead-Acid, NiCD and NiMH batteries during charge and discharge cycles. The exponential voltage increases when battery is charging, no matter the SOC of the battery. When the battery is discharging, the exponential voltage decreases immediately:Dialog Box and ParametersParameters Tab

7、Battery typeProvides a set of predetermined charge behavior for four types of battery: Lead-Acid Lithium-Ion Nickel-Cadmium Nickel-Metal-HydrideNominal Voltage (V)The nominal voltage (Vnom) of the battery (volts). The nominal voltage represents the end of the linear zone of the discharge characteris

8、tics.Rated Capacity (Ah)The rated capacity (Qrated) of the battery in ampere-hour. The rated capacity is the minimum effective capacity of the battery.Initial State-Of-Charge (%)The initial State-Of-Charge (SOC) of the battery. 100% indicates a fully charged battery and 0% indicates an empty battery

9、. This parameter is used as an initial condition for the simulation and does not affect the discharge curve (when the option?Plot Discharge Characteristics?is used).Use parameters based on Battery type and nominal valuesLoad the corresponding parameters in the entries of the dialog box, depending on

10、 the selected?Battery type, the?Nominal Voltage?and the?Rated Capacity.When a preset model is used, the detailed parameters cannot be modified. If you want to modify the discharge curve, select the desired battery type to load the default parameters, and then uncheck the?Use parameters based on Batt

11、ery type and nominal values?checkbox to access the detailed parameters.Maximum Capacity (Ah)The maximum theoretical capacity (Q), when a discontinuity occurs in the battery voltage. This value is generally equal to 105% of the rated capacity.Fully charged Voltage (V)The fully charged voltage (Vfull)

12、, for a given discharge current. Note that the fully charged voltage is not the no-load voltage.Nominal Discharge Current (A)The nominal discharge current, for which the discharge curve has been measured. For example, a typical discharge current for a Ah NiMH battery is 20% of the rated capacity: *

13、Ah / 1h = .Internal ResistanceThe internal resistance of the battery (ohms). When a preset model is used, a generic value is loaded, corresponding to 1% of the nominal power (nominal voltage * rated capacity of the battery). The resistance is supposed to be constant during the charge and the dischar

14、ge cycles and does not vary with the amplitude of the current.Capacity (Ah) Nominal VoltageThe capacity (Qnom) extracted from the battery until the voltage drops under the nominal voltage. This value should be between?Qexp?and?Qmax.Exponential zone Voltage (V), Capacity (Ah)The voltage (Vexp) and th

15、e capacity (Qexp) corresponding to the end of the exponential zone. The voltage should be between?Vnom?Vfull. The capacity should be between 0 andQnom.View Discharge Characteristics TabPlot Discharge CharacteristicsClick to plot a figure containing two graphs. The first graph represents the nominal

16、discharge curve (at the?Nominal Discharge Current) and the second graph represents the discharge curves at the specified discharge currents.Discharge currentAllows to specify different values of discharge current. The discharge characteristics for these currents are presented in the second part of t

17、he graph.UnitsChoose either?Time?or?Ampere-hour?as the?x-axis for the plot.Battery Dynamics TabBattery response time (s)The response time of the battery (at 95% of the final value).This value represents the voltage dynamics and can be observed when a current step is applied:In this example, a batter

18、y response time of 30 secs is used.Extract Battery Parameters From Data SheetsThis section gives an example of detailed parameters extracted from the Panasonic NiMH-HHR650D battery data sheet:From the specification tables, we obtain the rated capacity and the internal resistance. The other detailed

19、parameters are deduced from the Typical Discharge Characteristics plot:ParameterValueRated capacity Ah2 m(a) VRated CapacityMaximum Capacity?(b)7 Ah * Fully Charged voltage?(c)Nominal Discharge Current?(d) ACapacity Nominal Voltage?Exponential Voltage?(e)Exponential Capacity?These parameters are app

20、roximate and depend on the precision of the points obtained from the discharge curve. A tool, called ScanIt (provided by amsterCHEM, can be used to extract values from data sheet curves.The parameters obtained from the data sheet are entered in the mask of the Battery block as in the following pictu

21、re:The discharge curves (the dotted line curves in the following plots) obtained with these parameters are similar to the data sheet curves.Cells in Series and/or in ParallelTo model a series and/or parallel combination of cells based on the parameters of a single cell, the parameter transformation

22、shown in the next figure can be used. The?Nb_ser?variable in mask below corresponds to the number of cells in series, and?Nb_par?corresponds to the number of cell in parallel:Block Inputs and OutputsmThe Simulink output of the block is a vector containing three signals. You can demultiplex these sig

23、nals by using the Bus Selector block provided in the Simulink library.SignalDefinitionSOCThe State-Of-Charge of the battery (between 0 and 100%). The SOC for a fully charged battery is 100% and for an empty battery is 0%. The SOC is calculated as:SOC=100(1?1Q?t0i(t)?dt).%CurrentThe Battery currentAV

24、oltageThe Battery voltageVModel ValidationExperimental validation of the model shown a maximum error of 5% (when SOC is between 10% and 100%) for charge (current between 0 and 2C) and discharge (current between 0 and 5C) dynamics.Model Assumptions The internal resistance is supposed constant during

25、the charge and the discharge cycles and doesnt vary with the amplitude of the current. The parameters of the model are deduced from discharge characteristics and assumed to be the same for charging. The capacity of the battery doesnt change with the amplitude of current (No Peukert effect). The mode

26、l doesnt take the temperature into account. The Self-Discharge of the battery is not represented. It can be represented by adding a large resistance in parallel with the battery terminals. The battery has no memory effect.Limitations The minimum no-load battery voltage is 0 volt and the maximum batt

27、ery voltage is equal to 2*E0. The minimum capacity of the battery is 0 Ah and the maximum capacity is Qmax.ExampleThe?power_battery?example illustrates a 200 volts, Ah NiMH battery connected to a constant load of 50 A. The DC machine is connected in parallel with the load and operates at no load tor

28、que. When the State-Of-Charge (SOC) of the battery goes under (40%), a negative load torque of 200 Nm is applied to the machine so it acts as a generator to recharge the battery. When the SOC goes over 80%, the load torque is removed so only the battery supplies the 50 amps load.The simulation produ

29、ces the followings results:The battery is discharged by the constant DC load of 50 A. When the SOC drops under , a mechanical torque of ?200 Nm is applied so the machine acts as a generator and provides a current of 100 amps. Hence, 50 amps goes to the load and 50 amps goes to recharge the battery. When the SOC goes over , the mechanical torque is removed and the machine operates freely. And then the cycle restarts.References1 Tremblay, O., Dessaint, . Experimental Validation of a Battery Dynamic Model for EV Applications. World Electric Vehicle Journal.

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2