ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:27.01KB ,
资源ID:6497056      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-6497056.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(植物杂种优势形成的分子遗传机理研究进展文档格式.docx)为本站会员(b****4)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

植物杂种优势形成的分子遗传机理研究进展文档格式.docx

1、研究表明,表型变异的分子基础在于基因表达的变化. 从基因组组成上看,杂交种的全部基因组来自两个亲本,并没有新的基因出现, 但其性状并非亲本的简单组合,这可能与来自亲本的基因在杂种一代的基因表达方式改变有关2. 最近的研究结果表明,杂交种与亲本相比,不但在转录组上出现显著变化1125,而且在蛋白质组上也发生了明显的表达改变2630,表现为加性和非加性等差异表达模式,其中加性表达表示杂交种中的表达水平等于两个亲本的平均值,即中亲表达,可以解释为基因的加性效应.在非加性表达模式中,存在单亲沉默、双亲共沉默、杂种特异、杂种增强、杂种减弱、杂种偏低亲和杂种偏高亲等多种差异表达类型,其中单亲沉默、杂种偏低

2、亲和偏高亲可解释为基因的显性效应,双亲共沉默及杂种特异、增强和减弱可解释为基因的超显性效应,这与在基因组水平的研究结果相吻合,即多种分子模型共同对植物杂种优势的形成起作用29, 30. 进一步的研究发现,某些基因差异表达模式与水稻、玉米和小麦的某些性状杂种优势存在显著的相关,这为从基因表达角度探讨作物杂种优势机理提供了重要理论依据3134 .分析发现,杂交种与亲本之间的基因差异表达与选用的杂交组合、所研究的性状及发育时期有关1130. 例如,Hoecker等15采用基因芯片方法对12个玉米杂交种及其亲本初生根的基因表达谱进行了分析,发现仅有一个基因,即超氧化物歧化酶2在所有组合中表现为超亲表达

3、. 我们建立了小麦杂交种与亲本苗期叶片和根系蛋白表达谱,并进行了比较分析30. 从差异表达基因的比例来看,在根系和叶片中,分别有10%和5.5%的蛋白发生了差异表达,说明根系中有更多的基因发生了差异表达,这与转录水平的研究结果相吻合18. 从蛋白的功能来看,两个组织中的差异表达蛋白没有任何重叠. 因此,不同性状的杂种优势由部分不冗余基因位点所决定,所以从基因表达水平上进行杂种优势机理研究,需要从特定的性状入手,并首先确定该性状杂种优势形成的关键发育时期.迄今为止,已经建立了水稻、小麦和玉米等植物的杂交种与亲本不同组织和器官的表达谱,并筛选出了大量的差异表达基因. 功能分类结果显示,这些差异表达

4、基因涉及到转录和翻译、代谢、能量、信号传导、细胞结构和胁迫响应等类别1140. 尽管这些差异表达基因在杂种优势形成过程的作用还不十分明确, 但其中的部分基因经转基因证实与植物的生长发育有重要关系. 例如,小麦杂种增强表达的ADP-核糖基化因子基因在拟南芥中超表达后促进植株的生长41,而杂种减弱表达小麦14-3-3基因超表达后则抑制植株生长(结果待发表). 因此,在差异表达基因克隆的基础上,采用转基因方法进行功能鉴定将有助于筛选出与杂种优势相关的重要候选基因,并为进一步阐明基因差异表达与特定农艺性状杂种优势形成的关系奠定基础.2.2 等位基因变异与杂种优势杂合性是杂种优势的遗传学基础. 因此,杂

5、种优势的形成取决于亲本之间的遗传差异,即等位基因变异4245 . 研究表明,不同玉米自交系在全基因组范围内存在广泛的等位基因序列变异. 例如,对玉米自交系B73与Mo17的基因组序列进行比较后发现, 平均每309 bp中就有一个长度(插入或者缺失)多态性, 每73 bp中就存在一个SNP. 据估计, 任何两个玉米自交系之间在每100 bp的核苷酸序列中就存在有一个多态性位点45. 最近,以玉米、小麦和水稻等植物的杂交种及其亲本自交系为材料研究发现,杂交种中存在广泛的等位基因表达变异42, 43, 45, 46. 在杂交种中,可能正是这些不同等位变异的组合导致杂种优势的产生. 据此,Birchl

6、er44提出了解释杂种优势分子机理的两种模式,一种模式是杂交种结合了来自亲本每个基因的两个不同的等位基因,这两个不同的等位基因共表达从而产生杂种优势,另一种模式是来自亲本的不同等位基因的结合可以产生互作,导致其杂种中基因表达偏离中亲值(比如基因表达上调),进而导致杂种优势的形成. 例如,玉米B和Pl转录因子基因之间的互作导致玉米花青素合成杂种优势45和拟南芥的FRI和FLC基因互作与开花期杂种优势47.基因表达受顺式作用元件和反式作用因子的影响,其中顺式作用元件(cis)主要有启动子和增强子等,而反式作用因子(trans)主要有RNA聚合酶及各类转录因子. 依据P比值(亲本间等位基因表达水平之

7、比)和H比值(杂交种中等位基因表达水平之比)的关系,可以把等位基因的调控模式分为:无变异(Conserved) (P比值=1且H比值1);2)Cis(P比值1, H比值1,P比值 =H比值);3)Trans(P比值1,H比值1);4)Cis +Tans(P比值 1, H比值 1,P比值H比值);5)(H比值 1,P比值H比值)42. 以玉米和小麦为材料进行的研究结果显示,杂交F1代与之间的等位基因差异表达存在各种调控模式,包括Cis、Trans、Cis +Tans和Cis Trans等 42, 43, 45, 46 ,这为进一步探讨杂交种中等位基因变异与杂种优势表现的关系提供重要参考依据。2.

8、3 表观遗传调控与杂种优势机理表观遗传学是指基于非基因序列改变所致的基因表达水平变化,是当前生命科学领域研究的热点,包括DNA甲基化、染色质结构修饰和小分子RNA调控等方面48. 最近的许多研究均表明,DNA甲基化可能在杂种优势形成过程中起重要作用4952 . 例如,Tsaftaris等49采用高效液相色谱法,对一个玉米杂交种及其双亲DNA中甲基化胞嘧啶占总胞嘧啶的比例进行了分析,发现杂种DNA的甲基化程度低于双亲,基因组表达活性与DNA甲基化存在显著的负相关. Xiong等50采用甲基化敏感扩增多态性(MSAP)方法,分析了一组水稻双列杂交组合中DNA甲基化与杂种优势的关系,发现杂种中总体甲

9、基化程度与杂种优势不相关,而某些特异位点上的甲基化程度改变对杂种优势有显著效应. 同样采用MSAP方法,Zhao等51以正反交玉米杂交种及其亲本为材料研究发现,杂交种与亲本之间存在明显的DNA甲基化差异。另外,Dai等52报道,催化DNA甲基化的关键酶DNA甲基转移酶家族基因在小麦杂交种与亲本之间存在明显的表达差异.组蛋白的乙酰化、脱乙酰化、甲基化和脱甲基化等修饰是表观遗传学的重要研究内容,也与基因的表达活性存在密切关系48. Wang等47报道,与亲本相比,人工合成的拟南芥异源四倍体开花期延迟,表现出明显的杂种优势. 分析发现,这与FLC基因启动子区域的H3K4甲基化和H3K9乙酰化水平提高

10、及H3K9甲基化水平降低有关. 最近我们研究发现,拟南芥的生长杂种优势与生物钟调控基因CCA和LHY启动子区域的组蛋白修饰状态改变有密切关系53.小RNA(smallRNA)是一类广泛存在于各种真核生物体中的小分子RNA,长度通常为2025个碱基. 已有的研究表明,小RNA在植物的整个生命周期中起着非常重要的作用48,但与杂种优势关系的研究至今没有系统开展起来. Mica等54克隆了5个玉米MicroRNA家族,并进行了表达分析. 结果发现,miR166在杂交种B73/H99及亲本B73籽粒中的表达水平明显低于另外一个亲本H99. 此外,在杂交种的幼苗和籽粒中,miR167的表达模式也与亲本显

11、著不同.3 杂种优势形成的基因网络系统解析杂种优势是一种复杂的生物学现象,其表现也是多样化的. 例如,同一种作物的不同杂交组合,其杂种优势幅度存在很大的差异. 对于同一杂交组合,不同性状的优势表现也不同,这说明杂种优势不是单一位点作用的结果,也不是两个亲本之间总体杂合性的简单体现45. 在杂种优势机理研究上,已经定位大量的重要性状杂种优势QTL位点,并明确亲本基因在杂交种中发生了明显的表达改变,需要进一步回答的问题是这些基因是如何互作并导致优势产生的,即杂种优势形成的基因网络系统。鲍文奎在1990年提出了基因网络系统,认为不同的生物其基因组都有一套保证个体正常生长与发育的遗传信息,包括全部的编

12、码基因、控制基因表达的控制序列以及协调不同基因之间相互作用的组分基因组将这些看不见的信息编码在DNA上,组成了一个使基因有序表达的网络,通过遗传程序将各种基因的活动联系在一起。如果某些基因发生了突变,则会影响到网络中的其他成员,并通过网络系统进一步扩大其影响,进一步发展成为可见变异该系统还认为,在不同物种,不同生态型到同一生态型的不同个体之间存在许多执行同一功能的基因它们在基因网络系统中处在相同的工作位置,但其功能或工作效率会有稍微的差别在一个杂合的基因型中,就某个指定的基因而言, 只要一个稍次的等位基因成员的表达代替最佳成员,就可能影响网络系统的工作效率。杂种一代是两个不同基因群组合在一起形

13、成一个新的网络系统,在这个新组建的网络系统中, 等位基因成员处在最好的工作状态, 使整个遗传体系发挥最佳效率时, 即可实现杂种优势55, 56最近,对小麦株高杂种优势和拟南芥生长杂种优势形成的基因表达调控网络解析取得了明显的研究进展. 株高是植物的重要农艺性状之一,而赤霉素为其生长发育的重要调控物质. Zhang等57从形态学、激素和基因表达等三个层次上对赤霉素代谢调控与小麦株高杂种优势表现的关系进行了系统分析,并初步提出了小麦株高杂种优势形成的赤霉素分子调控模式. 该研究发现,由于控制赤霉素生物合成的一些关键酶基因,如KAO、 GA20氧化酶和GA3 -羟化酶基因在杂种中增强表达,导致杂种中

14、的活性赤霉素含量显著高于亲本,同时赤霉素受体蛋白基因GID1在杂种中表达量显著高于亲本,杂种对内源GA信号应答的效率可能比亲本更高,导致了参与赤霉素信号应答的基因,特别是受赤霉素诱导表达的靶基因在杂种中表达上调. 这些靶基因在杂种中的增强表达导致了杂种分生组织和伸长区细胞的分裂和伸长都比亲本更活跃,促使杂种茎以更快的速度伸长,最终形成了株高的杂种优势.杂交玉米等杂交植物比它们的亲本更为健壮、产量更高、种子更大. 在多倍体植物中也具有类似的现象,超过70%的开花植物都是天然的多倍体48,但科学家一直未能理解其中的分子机制. 以拟南芥为材料研究发现,与亲本相比,在杂交种和多倍体植物中,与光合作用和

15、淀粉代谢有关的基因在白天的表达水平更高,使杂交种和多倍体植物合成更多的光合产物,所以植株更加高大. 分析发现,这些基因的启动子区域都存在能与生物钟调控基因CCA和LHY结合的顺式作用元件EE(Evening Element). 进一步研究发现,在光照条件下,杂交种和多倍体植物中的CCA和LHY基因的表达水平较亲本更低,这与其启动子区域的组蛋白修饰状态改变有关. 此外,转基因实验也证实,CCA和LHY基因的表达与光合作用和淀粉代谢有直接联系. 据此,我们提出表观遗传调控参与的生物钟基因表达调控网络与拟南芥的生长杂种优势有重要关系53.4 总结与展望杂种优势形成机理是生物学领域的一个世纪难题,主要

16、原因在于杂种优势是一个复杂的生物学现象,由多个基因组位点所控制,并且不同性状的杂种优势由部分不冗余的位点组合所决定. 因此,要解析杂种优势形成的分子生物学基础,应从特定性状分析入手,确定控制该性状杂种优势的主效QTLs,并以这些QTLs的近等基因系或渗入系为材料进行研究,这样可以降低遗传背景的影响10. 相信随着植物基因组学研究的深入和发展,精细定位杂种优势相关的QTL位点或基因,进一步解析其遗传效应和互作模式,分离克隆杂种优势QTL或基因,并完成其功能解析,同时开展不同植物之间杂种优势遗传学基础的比较研究,将对进一步阐明杂种优势的遗传基础起到重要推动作用. 在杂种优势分子机理研究上,需要进一

17、步探讨的是差异表达基因在杂种优势形成过程中的作用. 因此,分析杂交种与亲本之间在转录、蛋白质和代谢表达谱上的差异,并解析重要性状杂种优势形成的基因表达调控网络就成为一个重要的突破口. 另外,既然杂交种与亲本之间基因差异表达与杂种优势有关,那么揭示杂交种与亲本之间基因差异表达的调控机理对认识杂种优势分子机理具有重要意义,比如,杂种中等位基因变异的组合和互作是如何导致优势表型的产生的?表观遗传调控机制是否参与杂交种中基因的差异表达?植物激素在植物生长发育过程中起着重要的调控物质。最近,关于植物激素与植物形态性状发育关系的研究已经取得了很大进展,包括赤霉素与株高58、细胞分裂素与水稻的穗粒数59、生

18、长素与植物侧根的生长等60,而在主要农作物中,这些性状都表现出很强的杂种优势。因此,为全面解析植物杂种优势形成的分子生物学基础,一个重要的研究方向将是深入探讨杂交种与亲本之间在激素代谢及其调控上的差异. 参 考 文 献1. Duvick D N. The genetics and exploitation of heterosis in crops. eds. J.G. Coors et al . Madison: Crop Science Society of America, 1997, 1930.2. 孙其信. 农作物杂种优势机理研究及展望. 作物杂志, 1998, 4: 313. St

19、uber C W, Lincoln S E, Wolff D W, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823-8394. Xiao J H, Li J M, Yuan L P, et al. Dominance is the major genetic basis of heterosis in rice as r

20、evealed by QTL analysis using molecular makers. Genetics, 1995, 140: 745-754.5. Li Z K, Luo L J, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Bio-mass and grain yield. Genetics, 2001, 158: 173717536. Luo L J, Li Z K, Mei

21、 H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics, 2001, 158: 175517717. Hua J P, Xing Y Z, Wu W R, et al. Single-locus heterotic effects and dominance by dominance interactions can adequately e

22、xplain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2003, 100: 2574-25798. Ma X Q, Tang J H, Teng W T, et al. Epistatic interaction is an important genetic basis of grain yield and its components in maize. Molecular Breeding, 2007, 20: 41-519. Semel Y, Nissenbaum J

23、, Menda N, et al. Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci USA, 2006, 103: 12981-1298610. He G M, Luo X J, Tian F, et al. Haplotype Variation in structure and expression of a gene cluster that is associated with a quantitative trait locus for improved

24、yield in rice. Genome Research, 2006, 16: 618-626. 11. 程宁辉. 水稻杂种一代与亲本幼苗基因表达差异的分析. 植物学报, 1997, 39: 379-38212. 程宁辉,杨金水,高艳萍, 等. 玉米杂种一代与亲本基因差异的初步研究. 科学通报, 1996, 41: 451-45413. 倪中福,孙其信,吴利民. 普通小麦不同优势杂交种及其亲本之间基因表达差异比较研究. 中国农业大学学报, 2000, 5: 1-814. Bao J, Lee S, Chen C, et al. Serial analysis of gene express

25、ion study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol, 2005, 138(3): 1216-123115. Hoecker N, Keller B, Muthreich N, et al. Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gen

26、e expression and conserved expression trends. Genetics, 2008, 179(3): 1275-128316. Ge X, Chen W, Song S, et al. Transcriptomic profiling of mature embryo from an elite super-hybrid rice LYP9 and its parental lines. BMC Plant Biol, 2008, 8(1): 11417. Wu L M, Ni Z F, Sun Q X. Cloning and characterizat

27、ion of leaf cDNAs that are differentially expressed between wheat hybrids and their parents. MGG, 2003 270(3): 281-28618. Ni Z F, Sun Q X, Wu L M, et al. Differential gene expression between wheat hybrids and their parental inbreds in primary roots. Acta Botanica Sinica, 2002, 44(4): 457-46219. Song

28、 R T, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes. Proc. Natl. Acad Sci., 2003, 10(15): 9055-906020. Song S, Qu H, Chen C, et al. Differential gene expression in an elite hybrid rice cultivar (Oryza sativa, L) and its parental lines based on SAGE data. BMC P

29、lant Biol, 2007, 7: 4921. Vuylsteke M, Eeuwijk F V, Hummelen P V, et al. Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics, 2005, 171: 1267-127522. Huang Y, Zhang L D, Zhang J W, et al. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs.

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2