ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:154.02KB ,
资源ID:6514695      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-6514695.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(IHX一次侧入口温度控制系统Word下载.docx)为本站会员(b****3)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

IHX一次侧入口温度控制系统Word下载.docx

1、例如,对于常见的池式快堆堆芯,入口温度的变化将对堆芯冷却剂池的温度产生最显著地扰动,进而引起堆芯反应性的扰动;IHX中一次侧进口温度的变化往往也会引起堆芯入口温度偏离设定值。即便是对于具备自稳能力的IHX系统,其往往无法有效消除扰动量,系统的运行参数最终也会随之偏移设定值。对于本文研究的IHX而言,我们通过系统模型的建立,以上述的控制策略为基础,在simulink中得到其系统带有反馈信号的动态模块结构,如图0所示。图0 简化的IHX动态模块结构其中,表示一次侧入口扰动量从出现到对一次侧出口温度产生影响之间的惯性环节,并伴随相应的时间延迟;,表示IHX中从二次侧流量改变到对一次侧出口温度产生影响

2、之间的惯性环节,并伴随相应的时间延迟。 现假设反应堆运行在稳态工况,堆芯入口温度仍为设定值,使IHX一次侧入口温度发生20的扰动偏移量,观察系统的动态响应,如图00所示.图00 具有反馈信号的IHX一次侧出口温度动态特性从图00中的动态响应结果可以看出,以二回路冷却剂流量的调节为手段,并将一次侧出口温度维持恒定作为控制目标的IHX动态系统具有一定的自稳能力,对于20的扰动系统能够在约30s的时间内将一次侧入口温度维持在新的稳定值。但是,这远远不能满足无差控制的要求。图00的结果显示,20的扰动使得堆芯入口温度将发生将近6的偏移量,这对于安全性要求极高的反应堆系统而言是不能接受的。所以,必须针对

3、IHX的动态特性设计出能满足系统安全稳定要求的控制系统。1. 反馈控制系统此处,假设IHX一回路出口温度与堆芯冷却剂入口温度相等。将堆芯入口温度的测量值与设定值进行比较,得到的温度偏差信号作为控制器的输入信号,经过PI控制器之后,转化为电压信号。电压信号被送往二回路电磁泵调节泵的转速,从而改变二回路流量。二回路流量改变使得一回路温度跟着发生变化,最终一回路侧出口温度将逐渐稳定在设定值附近。反馈控制的simulink模块结构如图1所示。图1 IHX二回路流量控制系统simulink模块结构图IHX中一回路入口温度的改变将作为堆芯入口温度的扰动信号引入控制系统。一阶环节的时间常数参考相关文献设定。

4、PI控制器的参数整定采用常用的稳定边界法(文献:基于MATLAB/Simulink环境下的PID参数整定)。图1中的PI控制器经过整定后的比例、积分时间常数分别为:=2.527; =5.52为了检验该控制系统对系统调节要求的响应特性,做如下几个工况下的验证:1)假设堆芯入口温度设定值阶跃升高30,IHX入口扰动温度升高20(即代表堆芯功率的升高)。此时控制系统的动态响应曲线如图2所示。图2 堆芯入口温度30阶跃时控制系统的动态响应 从图2中可以看出,虽然堆芯入口温度设定值发生了30的阶跃变化,但是系统超调量仍然很小,经过大约35s的时间控制系统将堆芯入口温度稳定在新的设定值。2)假设堆芯温度设

5、定值阶跃增加50,IHX一次侧进口温度增加50,系统动态响应如图3所示。图3 堆芯入口温度50阶跃时系统动态响应(分析略)3)堆芯入口温度保持不变,IHX一次侧入口温度发生50阶跃扰动,动态响应如图4所示。图4 IHX一次侧入口发生50扰动时控制系统的动态响应4)堆芯出口温度100大阶跃变化时,控制系统动态响应如图5所示。图5 IHX一次侧入口发生100温度变化时控制系统动态响应总结,该控制系统对于运行在稳定工况的IHX而言,基本可以满足控制目标,而且控制过程也相对比较简单,系统响应时间在可接受的范围内。但是对于比较剧烈的温度阶跃,系统仍存在较大的超调,这对于堆芯内部构件的保护是不利的。下面考

6、虑在反馈的基础上加入前馈信号,以达到减小系统超调,加速系统稳定的目的。2. 前馈-反馈控制系统由于IHX一次侧入口温度的扰动总是会对二回路温度及堆芯钠池温度造成比较大的影响,所以考虑将一次侧入口温度变化量作为扰动信号的同时,作为一个前馈信号引入控制系统。控制系统流程如图6所示。图6 IHX二回路流量前馈-反馈控制流程图根据无偏差控制的要求,可知有:成立,即 根据上述设计的控制原理,可以在simulink中得到相应的控制系统模块结构,如图7所示。图7 IHX二回路流量前馈-反馈控制模块结构图控制效果及分析 为了与前述的PI控制器比较控制结果的优劣,控制系统的输入参数设定与前述PI控制器的相同。1

7、) 假设堆芯入口温度设定值阶跃升高30,IHX入口扰动温度升高20,此时的控制系统动态响应如图8所示。图8 堆芯入口温度设定值30阶跃时控制系统动态响应从图8中可以看出,系统的超调振荡已经消失,大约经过35s的系统控制调节,堆芯入口温度最终稳定在新的设定值,整个动态过程不存在超调。 2)假设堆芯温度设定值阶跃增加50,IHX一次侧进口温度增加50,系统动态响应如图9所示。图9 堆芯入口温度设定值50阶跃变化时控制系统的动态响应 (对比分析略)3)保持堆芯入口温度设定值不变,IHX一次侧入口温度发生50扰动量,系统动态响应如图10所示。图10 IHX一次侧入口温度发生50扰动时控制系统的动态响应

8、(对比分析:最大超调量减小了将近2/3,系统调整时间也比PI控制系统减小了很多。)4)堆芯出口温度100大阶跃变化,堆芯入口温度设定不变,控制系统动态响应如图11所示。 (对比分析:从图中动态曲线的对比可知,具有前馈-反馈控制器的控制系统即便是在发生100较大的扰动时,其控制系统最大超调仍然比没有前馈控制环节的控制系统减小近50%,这充分说明前馈-反馈控制系统较之PI反馈控制系统的优越性。PI反馈控制与前馈-反馈控制系统动态性能的比较:1) 假设堆芯入口温度设定值阶跃升高30,IHX入口扰动温度升高20其中FF-FB表示前馈-反馈控制系统结果;FB表示单反馈控制系统的结果(下同)。2) 堆芯入口温度阶跃50,IHX一次侧入口温度扰动量为50。3) 堆芯入口温度设定值不变,扰动量增加50。4) 堆芯入口温度不变,扰动量增加100。结果分析:系统动态调节时间受系统自身热惯性的制约,这是控制系统无法改变的动态变量。

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2