ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:161KB ,
资源ID:7742595      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-7742595.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(带传动的动力学模型的建立Word格式.docx)为本站会员(b****4)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

带传动的动力学模型的建立Word格式.docx

1、(1.4)式中,振幅 和、频率 与相位角 都是未知的。 将式(1.4 )代入式(1.3 )中,整理后可得:由上式可见,贝(1.5 )而式(1.4)在任何瞬时都可以满足系统振动模型的运动方程即式(1.3),且 是微分方程式(1.3)的解。同时当 =0时,式(1.5)也成立,但式(1.5) 只代表带传动系统平衡下的情况,不代表启动、加速、停止情况下的振动情形。要使 和 有非零解,式(1.5 )的系数行列式必须等于0,贝(1.6)通过整理可得:(1.7) 经观察可知,上式为 的二次式,为振动模型的频率方程,解出两个根分 别为: (1.8)将式(1.2)代入式(1.8)中,可得固有频率是:_ _ (1

2、.8.1)对于带传动系统,代入已知测量出来的数据,皮带的线性拉伸刚度 ,主动带轮的转动惯量,从动带轮的转动惯量 ,主、从动带轮的半径值,可以得出带传动系统的固有频率。1.1.3带传动系统对外界激励的响应在带传动过程中,始终存在预紧力 ,考虑到由带轮的偏心、传动系统启动的不平稳等激励因素引起的、作用在主动轮上的等效简谐力矩为 ,则带传动系统振动模型的运动方程可以改成:式中, 一,且上式为二阶线性常系数非齐次微分方程组,因此它的特 解为稳定的等幅振动,系统按与激振力相同的频率 作强迫振动。设其解为:(1.10)其中,振幅、 为未知常数。然后把式(1.10)代入式(1.9)中,可得:(1.11) 通

3、过解上式二元一次方程组,得:(1.12)其中,式中 = ,而将式(1.2)、式(1.12)代入式(1.10)中,可得系统在激励作用下的响应为:(1.13)通过上述结果表明,系统做与激励同频率的简谐振动,其振幅不仅决定激 励的幅值,更重要的是与系统的固有频率和激励频率有很大的关系。又由式(1.12)得,当激励频率 等于系统的固有频率 或 时,系统振幅无限增大, 即为共振。1.2带传动的相对滑动对速度波动的影响带传动是利用弹性环形带和带轮来传递运动和动力的,根据传动原理将其 分为摩擦传动和啮合传动。摩擦传动是传动带以一定的预紧力套在主动轮和从 动轮上,依靠传动带与带轮表面之间的摩擦力来传递运动和动

4、力。啮合传动则 是依靠传动带表面的带齿与带轮上的齿槽相啮合而传递运动和动力。 显然此次系统中采用的是摩擦与啮合复合传动。1.2.1带传动啮合特性及动态分析同步带传动的带齿与轮齿的啮合是一种在节距相等下的嵌合, 其动力是通过齿之间的法向力和轮齿顶部与带齿根部的摩擦力以及带齿的弹性变形来传递的。 同时同步带传动又具有类似链传动的多边形效应, 由此使得同步带传动的啮合具有较复杂的性质。基于以上原因在传动过程中会有振动的产生, 这将直接影响到 同步带传动的平稳性以及传动精度,一定程度上也影响带的使用寿命。122带传动的受力分析摩擦与啮合复合传动带在传动过程中,带与带轮的摩擦力不足以传动功率时, 带与带

5、轮之间出现相对滑动,如图所示,带齿与主动带轮开始啮合,在理想传动 状态下,带齿与带轮均匀啮合,设每个带齿与带轮啮合产生的法向作用力为 、。小带轮啮合段的带体承受紧边拉力 ,松边拉力和沿包角变化的摩擦力三个力作用。图1-2带的受力分析设 为摩擦与啮合复合传动带在工作中的有效拉力, 由摩擦与啮合传动原理可知:(1.14)由于摩擦与啮合复合传动带是挠性体由受力平衡可知: (1.15 )在对主动轮围齿内啮合齿进行受力分析时, 为便于分析建模,根据实际传动情况,对模型进行以下假设:1)为了简化模型,假设带齿啮合状态处于受力平衡,且带齿与轮齿啮合面间的 摩擦力忽略不计;2)带齿在啮合中无弹性回缩现象,不会

6、出现跳齿,磨齿;3)带在传动过程中,带齿的离心力忽略不计。根据以上假设,如图2. 15(a)所示,取啮合中第一个带齿为研究对象,带齿1受轮齿法向力 、紧边拉力、松边张力、带轮侧面的周向摩擦力2 、 带轮径向摩擦力 、带轮侧面对带的正压力 ,处于静力平衡状态。前面已作讨论,带齿的垂直截面上,带轮径向摩擦力 是沿带包角的一个变化量,如2.15(b)所示。、 与节圆切线方向的夹角分别为 、;为摩擦与啮合复合传动带的楔角。图1-3啮入处带体受力图带齿水平与垂直方向受力平衡可得:_ _ (1.16)式中、为已知量, 可根据带的拉力方向; 为带齿啮合角; 为带齿齿 厚所对应的圆心角的一半,设 S为节圆与带

7、齿对应的节弧长,Z为小带轮齿数,为小带轮节距,即: (1.17)图1-4带齿谷底受力图带齿1的齿谷be部分受力如图1-4所示,由于带轮齿顶部与带齿谷底面非接触。摩擦力为0但轮槽侧面对带侧面摩擦力 符合摩擦传动原理。根据欧拉公式一 得带齿一得拉力与带齿二的拉力满足如下关系:(1.18)其中 为带齿一与带齿二之间节圆弧所对应的圆心角图1-5带齿二受力图同理对带齿2, 3各齿进行受力分析,如图1-5所示,由力的平衡条件可得:(1.19)由此递推关系可得出第k齿两侧的张力为:(1.20)(1.21 )其中,式中的 。在带传动系统中进行啮合传动时。啮合齿数可引入取整函数来近似表达在传 动过程中。(1.2

8、2 )啮合传动合力为:2.1带传动的动态性能分析带传动系统工作中的动态性能是对带的寿命研究的重要部分。 带的截面尺寸、密度、转速、以预紧力和带轮的制造误差是产生振动的关键因素。2.1.1带传动横向振动模型的建立带在传递过程中的横向振动,可以把它简化为弦振动,以坐标原点为节圆切 点,以x轴为振动的平衡位置,简化模型如图 2-1(a)所示。图2-1 (b)为取带紧边中部的一段微元的受力分析图,列出 y方向力的平衡方程及在瞬时t时沿y方向的力平衡方程和力矩的平衡方程:(2.1) 一 (2.2)式中:T 带的预紧力; 带单位长度的质量,带元的质量为dm=dx;El 带的截面弯曲刚度;Q, Q+d 带本

9、身所受的剪应力, M M+d带本身所受的弯矩。考虑到该带传动的振动是微小的,x 0可以得到:(2.3)y (x,t )为带的变形量;(2.5 )由材料力学可知:弯矩与挠曲线的关系为: (2.6)(2.7 )将式(2.3 )、式(2.4 )、式(2.5 )和式(2.6 )代入式(2.1 )、式(2.2), 经整理可得:最后可得:2.1.2带传动纵向振动模型的建立(附加另外一种方法)摩擦与啮合复合传动带的纵向振动模型可以简化为梁振动的模型, 带的两边简化 为并联的弹簧和阻尼器,为等效轴系在传动过程中的变形,在其中一个带轮处施 加阻尼约束带轮。两带轮之间中心距可发生微量变化,简化模型如图 2-2所示

10、。图2-2带传动的纵向振动模型以从动轮2中心平衡位置时的位置为原点,系统的动能 和势能 在任意时 刻t分别为:(2.8 )带传动系统的阻尼力与外力所做虚功 为:其中,式中: 一一带的预紧力; 、 、 一一弹簧刚度; 、 一一弹簧阻尼的阻尼系数; 一一从动轮2的质量;、一一两带轮绕轴心的转动惯量;、 两带轮的半径; 从动轮的偏心距; 、 带轮1、带轮2的角速度;、 带轮1、带轮2的转角; 电机施加在带轮1的 转动力矩。通过拉格朗日方程和虚功原理推导出摩擦与啮合复合带传动纵向振动方程 为:(2.12) 式中: 一一质量矩阵; 一一刚度矩阵; 一一阻尼矩阵; 一一外 力矩阵。上面四个矩阵的表达分别为

11、:假设驱动主动轮1的电机性能较好,主动轮的扭振可不考虑,; ; ,则带传动系统可以看作双自由度的振动系统,其运动方程为:(2.13)式中:2.1.3带传动振动系统自由振动的频率因系统的固有频率与系统的阻尼及外界激振关系较小,所以为简便起见,在 运动微分方程(2.13 )中,暂时不考虑阻尼及激振的作用,即令 =0, =0,则系统无阻尼时的自由振动微分方程为:(2.14)由于方程(2.14)中的刚度矩阵不是对角阵,即存在弹性耦合,不能直接求 得其振动的固有频率。可采用文献1中设定同步解的方法将运动微分方程简化 为如下的频率方程:(2.15)式中,为与系统参数有关的某一常数向量,为系统的固有频率。为

12、使 、具有非零解,式(2.15)的特征行列式必须等于零即:(2.16)(2.17)由式(2.17 )解得振动系统的固有频率 、 分别为:(2.18)(2.19)组成一矩阵称为带传动系统的模态矩阵。2.1.4带传动振动系统有阻尼时的激励响应设激励是由从动轮的偏心 引起,为求解运动微分方程(2.13 ),应首先将运动微 分方程的弹性耦合进行解耦。为此作如下坐标变换(2.21)将式(2.21 )代入式(2.13 )中可得:(2.22)方程式(2.22 )两边同乘 ,得:(2.23) 其中:将式(2.23 )两边分别除以相应的模态质量为:(2.24)式中,2 =式(2.24)为两单自由度在有阻尼有激励的情况下的运动微分方程。 说明通过坐标的变换(变换矩阵为模态矩阵),原有的运动方程式(2.13)已解耦。所以、 为振动系统的自然坐标。设方程式(2.24 )的解为:(2.25) 将式(2.25 )代入式(2.24 )中得: (2.26)其中,一 。所以原方程式(2.13 )的激励响应为:(2.27)(2.28)

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2