ImageVerifierCode 换一换
格式:DOCX , 页数:58 ,大小:86.74KB ,
资源ID:831763      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-831763.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(生物化学和分子生物学复习归纳笔记Word文件下载.docx)为本站会员(wj)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

生物化学和分子生物学复习归纳笔记Word文件下载.docx

1、 极性中性氨基酸(7 种); 酸性氨基酸(Glu 和 Asp); 碱性氨基酸(Lys、Arg 和 His)。二、 肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的 -羧基与另一分子氨基酸的 -氨基经脱水而形成的共价键(-CO-NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N 端)与自由羧基端(C 端),肽链的方向是 N 端C 端。三、肽键平面(肽单位):肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个 碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。四、蛋白质的分子结构:蛋白质的分子结

2、构可人为分为一级、二级、三级和四级结构等层次。一级结构为线状结构,二、三、四级结构为空间结构。1. 一级结构:指多肽链中氨基酸的排列顺序,其维系键是肽键。蛋白质的一级结构决定其空间结构。2. 二级结构:指多肽链主链骨架盘绕折叠而形成的构象,借氢键维系。主要有以下几种类型:-螺旋:其结构特征为:主链骨架围绕中心轴盘绕形成右手螺旋;螺旋每上升一圈是3.6 个氨基酸残基,螺距为 0.54nm; 相邻螺旋圈之间形成许多氢键; 侧链基团位于螺旋的外侧。影响 -螺旋形成的因素主要是: 存在侧链基团较大的氨基酸残基; 连续存在带相同电荷的氨基酸残基; 存在脯氨酸残基。-折叠: 若干条肽链或肽段平行或反平行排

3、列成片; 所有肽键的 C=O和 NH 形成链间氢键;侧链基团分别交替位于片层的上、下方。-转角:多肽链 180回折部分,通常由四个氨基酸残基构成,借 1、4 残基之间形成氢键维系。无规卷曲:主链骨架无规律盘绕的部分。3. 三级结构:指多肽链所有原子的空间排布。其维系键主要是非共价键(次级键):氢键、疏水键、范德华力、离子键等,也可涉及二硫键。4. 四级结构:指亚基之间的立体排布、接触部位的布局等,其维系键为非共价键。亚基是指参与构成蛋白质四级结构的而又具有独立三级结构的多肽链。五、 蛋白质的理化性质:1. 两性解离与等电点:蛋白质分子中仍然存在游离的氨基和游离的羧基,因此蛋白质与氨基酸 一样具

4、有两性解离的性质。蛋白质分子所带正、负电荷相等时溶液的 pH 值称为蛋白质的等电点。2. 蛋白质的胶体性质:蛋白质具有亲水溶胶的性质。蛋白质分子表面的水化膜和表面电荷是稳定蛋白质亲水溶胶的两个重要因素。3. 蛋白质的紫外吸收:蛋白质分子中的色氨酸、酪氨酸和苯丙氨酸残基对紫外光有吸收,以色氨酸吸收最强,最大吸收峰为 280nm。4. 蛋白质的变性:蛋白质在某些理化因素的作用下,其特定的空间结构被破坏而导致其理化性质改变及生物活性丧失,这种现象称为蛋白质的变性。引起蛋白质变性的因素有:高温、高压、电离辐射、超声波、紫外线及有机溶剂、重金属盐、强酸强碱等。绝大多数蛋白质分子的变性是不可逆的。六、蛋白

5、质的分离与纯化:1. 盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。常用的中性盐有:硫酸铵、氯化钠、硫酸钠等。盐析时,溶液的 pH 在蛋白质的等电点处效果最好。凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。2. 电泳:蛋白质分子在高于或低于其 pI 的溶液中带净的负或正电荷,因此在电场中可以移动。电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。3. 透析:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。4. 层析:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相

6、)之间的分布不同而进行分离。主要有离子交换层析,凝胶层析,吸附层析及亲和层析等,其中凝胶层析可用于测定蛋白质的分子量。5. 超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离。超速离心也可用来测定蛋白质的分子量,蛋白质的分子量与其沉降系数 S 成正比。七、氨基酸顺序分析:蛋白质多肽链的氨基酸顺序分析,即蛋白质一级结构的测定,主要有以下几个步骤:1. 分离纯化蛋白质,得到一定量的蛋白质纯品;2. 取一定量的样品进行完全水解,再测定蛋白质的氨基酸组成;3. 分析蛋白质的 N-端和 C-端氨基酸;4. 采用特异性的酶(如胰凝乳蛋白酶)或化学试剂(如溴化氰)将蛋白质处理为若干条肽段;5

7、. 分离纯化单一肽段;6. 测定各条肽段的氨基酸顺序。一般采用 Edman 降解法,用异硫氰酸苯酯进行反应,将氨基酸降解后,逐一进行测定;7. 至少用两种不同的方法处理蛋白质,分别得到其肽段的氨基酸顺序;8. 将两套不同肽段的氨基酸顺序进行比较,以获得完整的蛋白质分子的氨基酸顺序。第三章 核酸的结构与功能一、核酸的化学组成:1. 含氮碱:参与核酸和核苷酸构成的含氮碱主要分为嘌呤碱和嘧啶碱两大类。组成核苷酸的嘧啶碱主要有三种尿嘧啶(U)、胞嘧啶(C)和胸腺嘧啶(T),它们都是嘧啶的衍生物。组成核苷酸的嘌呤碱主要有两种腺嘌呤(A)和鸟嘌呤(G),它们都是嘌呤的衍生物。2. 戊糖:核苷酸中的戊糖主要

8、有两种,即 -D-核糖与 -D-2-脱氧核糖,由此构成的核苷酸也分为核糖核苷酸与脱氧核糖核酸两大类。3. 核苷:核苷是由戊糖与含氮碱基经脱水缩合而生成的化合物。通常是由核糖或脱氧核糖的C1 -羟基与嘧啶碱 N1 或嘌呤碱 N9 进行缩合,故生成的化学键称为 ,N 糖苷键。其中由D-核糖生成者称为核糖核苷,而由脱氧核糖生成者则称为脱氧核糖核苷。由“稀有碱基”所生成的核苷称为“稀有核苷”。假尿苷()就是由 D-核糖的 C1 与尿嘧啶的 C5 相连而生成的核苷。二、核苷酸的结构与命名:核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核酸两大类。最常见的核苷酸为 5-核苷

9、酸(5 常被省略)。5-核苷酸又可按其在 5位缩合的磷酸基的多少,分为一磷酸核苷(核苷酸)、二磷酸核苷和三磷酸核苷。此外,生物体内还存在一些特殊的环核苷酸,常见的为环一磷酸腺苷(cAMP)和环一磷酸鸟苷(cGMP),它们通常是作为激素作用的第二信使。核苷酸通常使用缩写符号进行命名。第一位符号用小写字母 d 代表脱氧,第二位用大写字母代表碱基,第三位用大写字母代表磷酸基的数目,第四位用大写字母 P 代表磷酸。三、核酸的一级结构:核苷酸通过 3,5-磷酸二酯键连接起来形成的不含侧链的多核苷酸长链化合物就称为核酸。核酸具有方向性,5-位上具有自由磷酸基的末端称为 5-端,3-位上具有自由羟基的末端称

10、为 3-端。DNA 由 dAMP、dGMP、dCMP 和 dTMP 四种脱氧核糖核苷酸所组成。DNA 的一级结构就是指 DNA 分子中脱氧核糖核苷酸的种类、数目、排列顺序及连接方式。RNA 由 AMP,GMP,CMP,UMP 四种核糖核苷酸组成。RNA 的一级结构就是指 RNA 分子中核糖核苷酸的种类、数目、排列顺序及连接方式四、DNA 的二级结构:DNA 双螺旋结构是 DNA 二级结构的一种重要形式,它是 Watson 和 Crick 两位科学家于 1953 年提出来的一种结构模型,其主要实验依据是 Chargaff 研究小组对 DNA 的化学组成进行的分析研究, 即 DNA 分子中四种碱基

11、的摩尔百分比为 A=T、G=C、A+G=T+C(Chargaff 原则),以及由 Wilkins 研究小组完成的 DNA 晶体 X 线衍射图谱分析。天然 DNA 的二级结构以 B 型为主,其结构特征为:为右手双螺旋,两条链以反平行方式排列;主链位于螺旋外侧,碱基位于内侧;两条链间存在碱基互补,通过氢键连系,且 A-T、G- C(碱基互补原则); 螺旋的稳定因素为氢键和碱基堆砌力;螺旋的螺距为 3.4nm,直径为2nm。五、DNA 的超螺旋结构:双螺旋的 DNA 分子进一步盘旋形成的超螺旋结构称为 DNA 的三级结构。绝大多数原核生物的 DNA 都是共价封闭的环状双螺旋,其三级结构呈麻花状。在真

12、核生物中,双螺旋的 DNA 分子围绕一蛋白质八聚体进行盘绕,从而形成特殊的串珠状结构, 称为核小体。核小体结构属于 DNA 的三级结构。六、DNA 的功能:DNA 的基本功能是作为遗传信息的载体,为生物遗传信息复制以及基因信息的转录提供模板。DNA 分子中具有特定生物学功能的片段称为基因(gene)。一个生物体的全部 DNA 序列称为基因组(genome)。基因组的大小与生物的复杂性有关。七、RNA 的空间结构与功能:RNA 分子的种类较多,分子大小变化较大,功能多样化。RNA 通常以单链存在,但也可形成局部的双螺旋结构。1. mRNA 的结构与功能:mRNA 是单链核酸,其在真核生物中的初级

13、产物称为 HnRNA。大多数真核成熟的 mRNA 分子具有典型的 5-端的 7-甲基鸟苷三磷酸(m7GTP)帽子结构和 3-端的多聚腺苷酸(polyA)尾巴结构。mRNA 的功能是为蛋白质的合成提供模板,分子中带有遗传密码。mRNA 分子中每三个相邻的核苷酸组成一组,在蛋白质翻译合成时代表一个特定的氨基酸,这种核苷酸三联体称为遗传密码(coden)。2. tRNA 的结构与功能:tRNA 是分子最小,但含有稀有碱基最多的 RNA。tRNA 的二级结构由于局部双螺旋的形成而表现为“三叶草”形,故称为“三叶草”结构,可分为五个部分:氨基酸臂由 tRNA 的 5-端和 3-端构成的局部双螺旋,3-端

14、都带有-CCA-OH 顺序,可与氨基酸结合而携带氨基酸。DHU 臂:含有二氢尿嘧啶核苷,与氨基酰 tRNA 合成酶的结合有关。反密码臂: 其反密码环中部的三个核苷酸组成三联体,在蛋白质生物合成中,可以用来识别 mRNA 上相应的密码,故称为反密码(anticoden)。 TC 臂:含保守的 TC 顺序,可以识别核蛋白体上的rRNA,促使 tRNA 与核蛋白体结合。可变臂:位于 TC 臂和反密码臂之间,功能不详。3. rRNA 的结构与功能:rRNA 是细胞中含量最多的 RNA,可与蛋白质一起构成核蛋白体,作为蛋白质生物合成的场所。原核生物中的 rRNA 有三种:5S,16S,23S。真核生物中

15、的 rRNA 有四种:5S,5.8S,18S,28S。八、核酶:具有自身催化作用的 RNA 称为核酶(ribozyme),核酶通常具有特殊的分子结构,如锤头结构。九、核酸的一般理化性质:核酸具有酸性;粘度大;能吸收紫外光,最大吸收峰为 260nm。十、DNA 的变性:在理化因素作用下,DNA 双螺旋的两条互补链松散而分开成为单链,从而导致 DNA 的理化性质及生物学性质发生改变,这种现象称为 DNA 的变性。引起 DNA 变性的因素主要有:高温,强酸强碱,有机溶剂等。DNA 变性后的性质改变: 增色效应:指 DNA 变性后对 260nm 紫外光的光吸收度增加的现象;旋光性下降;粘度降低;生物功

16、能丧失或改变。加热 DNA 溶液,使其对 260nm 紫外光的吸收度突然增加,达到其最大值一半时的温度,就是 DNA的变性温度(融解温度,Tm)。Tm 的高低与 DNA 分子中 G+C 的含量有关,G+C 的含量越高,则Tm 越高。十一、DNA 的复性与分子杂交:将变性 DNA 经退火处理,使其重新形成双螺旋结构的过程,称为 DNA 的复性。两条来源不同的单链核酸(DNA 或 RNA),只要它们有大致相同的互补碱基顺序,以退火处理即可复性,形成新的杂种双螺旋,这一现象称为核酸的分子杂交。核酸杂交可以是 DNA-DNA,也可以是 DNA-RNA 杂交。不同来源的,具有大致相同互补碱基顺序的核酸片

17、段称为同源顺序。常用的核酸分子杂交技术有:原位杂交、斑点杂交、Southern 杂交及 Northern 杂交等。在核酸杂交分析过程中,常将已知顺序的核酸片段用放射性同位素或生物素进行标记,这种带有一定标记的已知顺序的核酸片段称为探针。十二、核酸酶:凡是能水解核酸的酶都称为核酸酶。凡能从多核苷酸链的末端开始水解核酸的酶称为核酸外切酶凡能从多核苷酸链中间开始水解核酸的酶称为核酸内切酶。能识别特定的核苷酸顺序,并从特定位点水解核酸的内切酶称为限制性核酸内切酶(限制酶)。第四章 酶一、酶的概念:酶(enzyme)是由活细胞产生的生物催化剂,这种催化剂具有极高的催化效率和高度的底物特异性,其化学本质是

18、蛋白质。酶按照其分子结构可分为单体酶、寡聚酶和多酶体系(多酶复合体和多功能酶)三大类。二、酶的分子组成:酶分子可根据其化学组成的不同,可分为单纯酶和结合酶(全酶)两类。结合酶则是由酶蛋白和辅助因子两部分构成,酶蛋白部分主要与酶的底物特异性有关,辅助因子则与酶的催化活性有关与酶蛋白疏松结合并与酶的催化活性有关的耐热低分子有机化合物称为辅酶。与酶蛋白牢固结合并与酶的催化活性有关的耐热低分子有机化合物称为辅基。三、辅酶与辅基的来源及其生理功用:辅酶与辅基的生理功用主要是: 运载氢原子或电子,参与氧化还原反应。 运载反应基团, 如酰基、氨基、烷基、羧基及一碳单位等,参与基团转移。大部分的辅酶与辅基衍生

19、于维生素。维生素(vitamin)是指一类维持细胞正常功能所必需的,但在许多生物体内不能自身合成而必须由食物供给的小分子有机化合物。维生素可按其溶解性的不同分为脂溶性维生素和水溶性维生素两大类。脂溶性维生素有VitA、VitD、VitE 和 VitK 四种;水溶性维生素有VitB1,VitB2,VitPP,VitB6,VitB12,VitC,泛酸,生物素,叶酸等。1. TPP:即焦磷酸硫胺素,由硫胺素(Vit B1)焦磷酸化而生成,是脱羧酶的辅酶,在体内参与糖代谢过程中 -酮酸的氧化脱羧反应。2. FMN 和 FAD:即黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD),是核黄素(VitB2

20、)的衍生物。FMN 或 FAD 通常作为脱氢酶的辅基,在酶促反应中作为递氢体(双递氢体)。3. NAD+和 NADP+:即尼克酰胺腺嘌呤二核苷酸(NAD+,辅酶)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+,辅酶),是 Vit PP 的衍生物。NAD+和 NADP+主要作为脱氢酶的辅酶,在酶促反应中起递氢体的作用,为单递氢体。4. 磷酸吡哆醛和磷酸吡哆胺:是 Vit B6 的衍生物。磷酸吡哆醛和磷酸吡哆胺可作为氨基转移酶, 氨基酸脱羧酶,半胱氨酸脱硫酶等的辅酶。5. CoA:泛酸(遍多酸)在体内参与构成辅酶 A(CoA)。CoA 中的巯基可与羧基以高能硫酯键结合,在糖、脂、蛋白质代谢中起传递酰基的

21、作用,是酰化酶的辅酶。6. 生物素:是羧化酶的辅基,在体内参与 CO2 的固定和羧化反应。7. FH4:由叶酸衍生而来。四氢叶酸是体内一碳单位基团转移酶系统中的辅酶。8. Vit B12 衍生物:Vit B12 分子中含金属元素钴,故又称为钴胺素。Vit B12 在体内有多种活性形式,如 5-脱氧腺苷钴胺素、甲基钴胺素等。其中,5-脱氧腺苷钴胺素参与构成变位酶的辅酶,甲基钴胺素则是甲基转移酶的辅酶。四、金属离子的作用:1. 稳定构象:稳定酶蛋白催化活性所必需的分子构象;2. 构成酶的活性中心:作为酶的活性中心的组成成分,参与构成酶的活性中心;3. 连接作用:作为桥梁,将底物分子与酶蛋白螯合起来

22、。五、酶的活性中心:酶分子上具有一定空间构象的部位,该部位化学基团集中,直接参与将底物转变为产物的反应过程,这一部位就称为酶的活性中心。参与构成酶的活性中心的化学基团,有些是与底物相结合的,称为结合基团,有些是催化底物反应转变成产物的,称为催化基团,这两类基团统称为活性中心内必需基团。在酶的活性中心以外也存在一些化学基团,主要与维系酶的空间构象有关,称为酶活性中心外必需基团。六、酶促反应的特点:1. 具有极高的催化效率:酶的催化效率可比一般催化剂高 1061020 倍。酶能与底物形成 ES 中间复合物,从而改变化学反应的进程,使反应所需活化能阈大大降低,活化分子的数目大大增加从而加速反应进行。

23、2. 具有高度的底物特异性:一种酶只作用于一种或一类化合物,以促进一定的化学变化,生成一定的产物,这种现象称为酶作用的特异性。绝对特异性:一种酶只能作用于一种化合物,以催化一种化学反应,称为绝对特异性,如琥珀酸脱氢酶。相对特异性:一种酶只能作用于一类化合物或一种化学键,催化一类化学反应,称为相对特异性,如脂肪酶。立体异构特异性:一种酶只能作用于一种立体异构体,或只能生成一种立体异构体,称为立体异构特异性,如 L-精氨酸酶。3. 酶的催化活性是可以调节的:如代谢物可调节酶的催化活性,对酶分子的共价修饰可改变酶的催化活性,也可通过改变酶蛋白的合成来改变其催化活性。七、酶促反应的机制:1. 中间复合

24、物学说与诱导契合学说:酶催化时,酶活性中心首先与底物结合生成一种酶-底物复合物(ES),此复合物再分解释放出酶,并生成产物,即为中间复合物学说。当底物与酶接近时底物分子可以诱导酶活性中心的构象以生改变,使之成为能与底物分子密切结合的构象,这就是诱导契合学说。2. 与酶的高效率催化有关的因素:趋近效应与定向作用;张力作用;酸碱催化作用; 共价催化作用;酶活性中心的低介电区(表面效应)。八、酶促反应动力学:酶反应动力学主要研究酶催化的反应速度以及影响反应速度的各种因素。在探讨各种因素对酶促反应速度的影响时,通常测定其初始速度来代表酶促反应速度,即底物转化量k+2 时,Km=k-1/k+1=Ks。因

25、此,Km 可以反映酶与底物亲和力的大小,即 Km 值越小, 则酶与底物的亲和力越大;反之,则越小。Km 可用于判断反应级数:当S100Km 时,=Vmax,反应为零级反应,即反应速度与底物浓度无关;当 0.01KmS100Km 时,反应处于零级反应和一级反应之间,为混合级反应。Km 是酶的特征性常数:在一定条件下,某种酶的 Km 值是恒定的,因而可以通过测定不同酶(特别是一组同工酶)的 Km 值,来判断是否为不同的酶。Km 可用来判断酶的最适底物:当酶有几种不同的底物存在时,Km 值最小者,为该酶的最适底物。Km 可用来确定酶活性测定时所需的底物浓度:当S=10Km 时,=91%Vmax,为最

26、合适的测定酶活性所需的底物浓度。Vmax 可用于酶的转换数的计算:当酶的总浓度和最大速度已知时,可计算出酶的转换数,即单位时间内每个酶分子催化底物转变为产物的分子数。Km 和 Vmax 的测定:主要采用 Lineweaver-Burk 双倒数作图法和 Hanes 作图法。2. 酶浓度对反应速度的影响:当反应系统中底物的浓度足够大时,酶促反应速度与酶浓度成正比,即 =kE。3. 温度对反应速度的影响:一般来说,酶促反应速度随温度的增高而加快,但当温度增加达到某一点后,由于酶蛋白的热变性作用,反应速度迅速下降。酶促反应速度随温度升高而达到一最大值时的温度就称为酶的最适温度。酶的最适温度与实验条件有关,因而它不是酶的特征性常数低温时由于活化分子数目减少,反应速度降低,但温度升高后,酶活性又可恢复。4. pH 对反应速度的影响:观察 pH 对酶促反应速度的影响,通常为一

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2