ImageVerifierCode 换一换
格式:DOC , 页数:58 ,大小:674.50KB ,
资源ID:8492425      下载积分:12 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-8492425.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(±800kV直流接地极设计技术规程.doc)为本站会员(wj)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

±800kV直流接地极设计技术规程.doc

1、Q/CSG115132010Q/CSGICS 备案号:中国南方电网有限责任公司 发 布2010 - 6 - 1实施2010 - 4 - 30 发布800kV直流接地极设计技术规程Technical rule for the design of ground electrodes for 800kV HVDC linksQ/CSG115132010代替Q/ P中国南方电网有限责任公司企业标准23目 次 前 言III1范 围12引用标准23术语和定义34设计原则54.1总则54.2系统条件54.3技术条件65接地极址75.1极址选择75.2土壤参数的测定75.3设计取值86电极材料97电极布置及其

2、尺寸117.1电极布置117.2电极尺寸128导流系统及辅助设施148.1导流系统布置148.2连接及防护148.3辅助设施149对环境的影响169.1地下金属构件169.2电力设施1610接地极线路1810.1设计原则1810.2技术条件18附录 A20附录B21附录C23附录D25附录E28附录F30附录G32前 言 800kV 换流站在我国为新的电压等级的换流站。本规程的技术原则基于国内外直流特高压的科研成果、800kV云南广东特高压直流输电换流站工程接地极设计的关键技术研究、设计专题研究结论和工程建设经验,并参考国内外高压换流站已有建设和运行经验提出,本规程总结和吸收了近年来国内外换流

3、站科研、设计、建设和运行中的新技术、新工艺和新材料应用成果,参考了高压直流接地极技术导则(DL 437-91)和CIGR Working Group 14.21-TF2 General Guidelines for the Design of Ground Electrodes for HVDC Links的有关成熟条文。本规程共分10章和7个附录,内容涉及接地极设计的各个方面,主要包括:设计原则、接地极址、电极材料、电极布置及其尺寸、导流系统及辅助设施、对环境的影响、接地极线路的技术要求。考虑到本标准的专业特殊性,本标准除了设计技术条款外,在附录中增加了试验项目及其方法和运行维护条款,供设计

4、、运行参考。本标准由中国南方电网有限责任公司提出和归口。本标准起草单位: 南方电网技术研究中心中国电力工程顾问集团公司中国电力工程顾问集团公司中南电力设计院中国电力工程顾问集团公司华东电力设计院中国电力工程顾问集团公司西南电力设计院本标准主要起草人:李岩、黎小林、吕金壮、黄莹、曾连生、李宝金、冯春业、俞敦耀、方静、韩燕明、黄曾述、魏德军。本标准由中国南方电网有限责任公司负责解释。1 范 围 本标准规定了800kV直流接地极的设计原则和设计方法。本标准适用于单极和双极运行的高压直流输电系统陆地接地极及其(架空)线路的设计、试验和运行维护。2 引用标准下列文件中的条款通过本标准的引用而成为本标准的

5、条款。凡是注日期的引用文件,其随后所有的修改单或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。GB 50021 岩土工程勘测规范GB 50217 电力工程电缆设计规程GB 6830 电信线路遭受强电线路危险影响的容许值GB/T 17949.1 接地系统的土壤电阻率、接地阻抗和地面电位测量导则 第1部分:常规测量DL/T621-1997 交流电气装置的接地DL/T 5092 110-500kV架空送电线路设计技术规程DL/T 5159 电力工程物探技术规程DL/T 5224 高压直流输电大地返回运行系统

6、设计技术规定DL 437-91 高压直流接地极技术导则SL 237-1999 土工试验规程CIGRE Working Group 14.21-TF2 General Guidelines for the Design of Ground Electrodes for HVDC Links3 术语和定义下列术语和定义适用于本标准。3.0.1 高压直流大地返回运行系统 HVDC earth return operation system在高压直流输电系统中,以大地或海水作电流回路运行而专门设计和建造的一组装置的总称。它主要包括接地极线路、接地极、导流系统及其辅助设施。3.0.2 接地极址 elec

7、trode site接地极所在场地。3.0.3 接地极线路 electrode line连接换流站中性母线与接地极导流系统的架空线路或地下电缆。3.0.4 接地极 electrode可持续地为直流系统传递直流电流的接地装置。是由若干组接地导体和活性填充材料组成。放置在陆地上的接地极,被称为陆地电极;放置在海水或海岸的接地极,被称为海洋或海岸电极。3.0.5 共用接地极 common electrode连接到两个及以上换流站的接地极。3.0.6 分体式接地极 share electrode由两个及以上并联接线运行的接地极。3.0.7 紧凑型接地极 Compact electrode通过对接地极的

8、优化布置和串接均流装置,迫使溢流密度安需分配,达到有效压缩接地极占地面积的接地极。3.0.8 导流系统 current guiding-system将接地极线路上的电流引导至接地馈电元件的装置。它由导流线和构架、隔离开关、馈电电缆及其连接件组成。3.0.9 馈电元件 feeding rod放置在接地极活性填充材料中的接地导体。3.0.10 馈电电缆feeding cable连接导流线和馈电元件的电缆,包括引流电缆和配电电缆。3.0.11 电缆跳线 jumping cable 连接馈电元件与馈电元件的电缆。3.0.12 额定电流 rating current under monopolar mo

9、de单极(运行)额定功率下的电流。3.0.13 最大过负荷电流 maximum overload Current换流阀在最高环境温度下和冷却设备投入运行时,可连续输送的最大过负荷电流。3.0.14 最大暂态电流 maximum transient overcurrents 在系统发生扰动时,流过接地极数秒时间内的平均最大电流。3.0.15 不平衡电流 unbalance current 双极直流系统运行时两极电流之差。对于双极对称运行方式,由于触发角和设备参数的差异,有不平衡电流流过,其值大小可由控制系统自动控制在额定电流的1%之内。当双极电流不对称运行时,流过接地极的电流为两极运行电流之差。

10、3.0.16 阴极 cathode电流由大地流向接地极时接地极的极性。3.0.17 阳极 anode电流由接地极流向大地时接地极的极性。3.0.18 溢流密度 current releasing-density单位长度馈电元件段泄入到大地中的电流。3.0.19 设计寿命 designed life接地极运行时间的设计取值,一般与换流站同步。3.0.20 腐蚀寿命 corrosion life接地极以阳极运行时的电流与时间之积。3.0.21 热时间常数 thermal time-constant在正常额定电流的持续作用下,接地极温度按其初始速度上升,到达稳态温度需要的时间,见附录B.2。3.0.

11、22 额定持续运行时间 continuous time under rating current正常额定电流运行下的额定持续时间, 见附录B.2。3.0.23 接地电阻 earthing resistance 接地电极对大地无穷远处的电阻 。3.0.24 跨步电压 step potential当高压直流接地极运行时,人体两脚接触地面且水平距离为1m的任意两点间电压。3.0.25 接触电势 touch potential当高压直流接地极运行时,在地面上离导电的金属物件等水平距离为1m处,与沿金属物件离地面的垂直距离为1.8m 处两点间的电位差。3.0.26 转移电势 transfer poten

12、tial当高压直流接地极运行时,人站在接地极附近地面触摸远方引入的接地导体,或人站在远处地面触摸极址附近引出的接地导体所承受的接触电势。转移电势最大值为接地极最大电位升。3.0.27 电渗透 electro-osmosis直流电场迫使接地极附近土壤中的水分子离开阳极的作用。4 设计原则4.1 总则4.1.1 直流大地返回运行系统设计必须贯彻国家的基本建设方针和技术经济政策,必须执行现行国家环境保护的法令和法规。4.1.2 直流大地返回运行系统设计应从实际出发,积极慎重地推广采用成熟的大地勘探技术、先进的分析计算手段和科学的设计思想,做到安全可靠、先进适用、经济合理、环境友好。4.1.3 直流大

13、地返回运行系统设计应符合国情,除了地面少量永久设施占地外,不考虑大面积征用接地极址土地,不影响农民耕种。4.1.4 本标准未尽条文,应按照现行国家标准和电力行业标准中有关规定执行。4.2 系统条件4.2.1 直流大地返回运行系统应满足直流大地返回运行的电流及其持续时间、设计寿命、接地极的极性以及对包括换流站、电力设施等在内的环境影响的技术要求。4.2.2 直流大地返回运行电流及其持续时间应由系统规划设计部门提供。如无可靠资料,设计时可按下列a)、b)、c)、d)和e)取值。a) 正常额定电流为系统额定直流电流(Id)。该电流最长持续时间为额定持续时间。对双极系统,一般取单极建成投运后至双极建成

14、投运前的一段时间。b) 最大过负荷电流及持续时间,按照直流系统2小时过负荷能力确定。c) 最大暂态电流系指持续数秒的过负荷电流,由系统稳定计算确定,一般取(1.25-1.50)Id。d) 对双极对称运行的直流输电系统,最大不平衡电流一般取Id的1%;对非对称运行的直流输电系统,取两极额定电流之差。e) 对共用接地极,应考虑所连接的直流系统出现同极性以大地返回方式运行的可能性,并结合系统和极址条件,确定相应工况下的入地电流。即在计算接地极温升时,入地电流宜取最大的一个直流系统以单极大地返回方式运行的额定电流与其它双极系统不平衡的电流之和;在计算跨步电压或接触电势时,入地电流宜取一个直流系统最大过

15、负荷电流和另一个直流系统额定电流之和。4.2.3 接地极一般应按一次性建成投产进行设计,其设计寿命应与直流输电系统换流站相同。如无可靠资料,接地极设计寿命宜不少于30年。4.2.4 接地极的极性应满足系统运行和环保要求,并满足极性可逆转运行的安全性。4.2.5 应根据接地极阳极运行安时数确定接地极设计腐蚀寿命。在计算接地极阳极运行安时数时,应考虑下列a)、b)和c)情况:a) 单极系统。对单极(或一极先建成投运)系统,接地极的极性可由系统规划部门确定。如无可靠资料,设计时宜按阳极设计。b) 双极系统单极运行。在双极系统投运后,应考虑一极检修或事故时,另一极(健全极)以大地回路运行情况。对此,应

16、根据系统规划部门提供相关资料计算以阳极运行期间的安时数。如无可靠资料,可按表4.2.5取值计算出每个接地极在双极系统投运后出现以阳极运行的安时数。表 .2.5 双极系统可靠性参数 状 态参 数 名 称(%)一极强迫停运时每端接地极出现以阳极运行的概率70.0强迫停运年时间比0.75一极计划停运时每端接地极出现以阳极运行的概率50.0计划停运年时间比1.50c) 双极运行。在双极运行期间,应根据4.2的系统条件选取(计算)不平衡电流以阳极运行的安时数。如无可靠资料,可按1%额定电流的不平衡电流计算以阳极运行的安时数。对共用接地极的设计抗腐蚀寿命,其阳极运行安时数应不小于各个相关直流系统要求接地极

17、阳极运行安时数之和。4.3 技术条件4.3.1 在任何情况下,接地极任意点的最高温度必须低于水的沸点。4.3.2 接地电极馈电元件宜分成若干段,任意一段退出(检修)或任意一根导流线断开,不影响接地极安全运行。4.3.3 在正常运行、系统发生扰动和带电检修接地极条件下,接地极地面任意点的最大跨步电压应不大于允许值,即:1)在正常(最大过负荷电流)运行条件下 (1)式(1)中:Emy最大允许跨步电压,V/m;s表层土壤电阻率,.m。如地面任意点最大跨步电压不满足式(1)要求,应采取隔离措施。2)在系统发生扰动(最大暂态电流)条件下 (2)式(2)中: t 是指最大暂态电流取值的持续时间,s;其它同

18、式(1)。3) 在接地极检修(1/4电极退出运行)条件下,最大跨步电压允许值Emy=36 V/m。4.3.4 对靠近鱼塘的接地极,正常额定电流下,水中任意点的场强不大于1.25V/m。4.3.5 在最大过负荷电流下,极址地面任意点接触电势不大于5+0.03。4.3.6 在正常额定电流下,接地极导体对导流构架(杆塔)间的电压,一般不宜大于36V。4.3.7 在正常额定电流下,地面转移电势:对带金属芯线的通信电缆不大于60V。5 接地极址5.1 极址选择5.1.1 接地极址的选择应通过技术经济比较择优选择,做到安全可靠,经济合理,对环境影响小。5.1.2 对预选的接地极址,至少应对10km范围内的

19、地形地貌、地质结构、水文气象、海洋潮汐(海岸或海洋电极)自然条件进行调查,并进行技术评估;同时应向当地政府或部门了解地方发展规划,至少应收集极址50km范围内现有和规划的电力设施(变电站、线路等)、地下金属管线、铠装或接地电缆和铁路等设施资料,以便对预选接地极址进行全面评估。5.1.3 接地极极址与换流站、220kV及以上电压等级的交流变电站、地下金属管道、通信电缆、铁路等设施应有足够的距离。5.1.4 接地极址应远离城市和人口稠密的乡镇,宜选择在交通方便、没有洪水冲刷和接地极线路走线方便的空旷地带。5.1.5 当采用陆地接地极时,要求接地极址具有宽阔而又导电性能良好的散流区,特别是在极址附近

20、的土壤电阻率宜在100.m以下;土壤潮湿,但不宜有渍水;接地极埋设区地面应平坦,最大相对高差不宜大于5m。5.1.6 为减少地电流对环境的影响,在有条件的地方宜优先考虑采用海洋或海岸电极;在满足系统运行条件下可优先考虑采用共用接地极方案。5.1.7 在经过技术经济论证合理的情况下,可以采用分体式接地极或紧凑型接地极。5.2 土壤参数的测定5.2.1 在进行接地极论证和设计中,需要测定接地极址土壤主要物理参数包括:土壤电阻率、大地电性特性及其结构;土壤热导率、热容率;土壤最高温度、湿度、地下水位等。5.2.2 土壤电阻率参数应采用现场物探法测量,以保证测量结果的真实性。常用土壤电阻率参数的测量方

21、法见附录D.1。在测量中,对仪表精度、外业观测、误差检验、数据校正等,应符合DL/T 5159电力工程物探技术规程中的规定。5.2.3 土壤电阻率参数测量范围宜大于2倍的接地极面积且不小于1km2,测量极距(S)宜不小于1000m。5.2.4 测量土壤电阻率参数应分块分层进行。对土壤类别界面清晰的地带,可根据土壤类别分层测量其电阻率;对土壤类别界面不清晰的地区,需要分块分层测量。测点一般宜均匀分布,不同极距(测量深度)下的测点布置密度不宜低于表5.2.4数值。表 5.2.4 不同极距下的布点密度极距(m)251015203050701001502003005007001000密 度(个/km2

22、)4936251694当电压探针极距S大于300m时,应采取措施(如增大测试电流、补偿等),减少地中干扰电流对测试结果的影响,保证测试结果误差不大于5%。对电压探针极距S大于300m,宜在相互垂直两个方向布线测量。5.2.5 确保测量结果正确。在测量土壤电阻率中,同一测点和同一测深(极距)应交换电源接线极性,分别读取两次测量数据;当两次测量数据差别大于5%时,应重复测量。5.2.6 应考察土壤电阻率参数季节系数。在接地极埋设处,应有代表性地建立若干个“永久性”标记,以便在旱季(土壤干燥)测量土壤电阻率时,能回到同一地点。5.2.7 极址大地电性参数测量。为了正确评价地电流对电力系统、地下金属管

23、道、地下电缆等设施产生的影响,一般应对极址大地电性特性及其结构进行勘探。大地电性特性及其结构,探测范围应是极址附近数平方公里甚至更大,勘探深度一般应至数十公里甚至直至地壳,勘探方法可采用大地电磁(MT)法或电位拟合法,原理简介见附录D.2。5.2.8 应测量电极埋设层土壤热容率。土壤热容率通常是在实验室用绝热的热量计测量,其方法既可利用持续热源,也可利用间歇热源,原理简介见附录D.3。送往实验室的样品,应是取自电极埋深处的土壤,并保持取样土壤原状和湿度。取样数目与极址土壤类别数相同,且不少于10个。5.2.9 应测量电极埋设层土壤热导率。土壤热导率测定可采用实验室或现场测试两种方法,原理简介见

24、附录D.4。在实验室测量热导率时,要求送往实验室的样品与测量热容率相同。5.2.10 土壤自然最高温度。土壤自然最高温度最好是通过实地测量或从气象部门获取。在测量地温时,宜采用热敏电阻温度计,测量地下2m处土壤夏季的最高和冬季的最低温度。对于没有地热热源和四季分明的地区,土壤自然最高温度可按该地区历年最高地面温度降10取值;土壤最低温度可按该地区历年最低地面温度加10取值。5.2.11 对于潮湿低洼的接地极址,应通过测量获取土壤的湿度(或地下常年水位)、Cl-、SO42-离子含量和pH值等参数。此外,如果接地极是作为阳极运行,还宜测量极址土壤的电渗透系数。5.2.12 地质勘探。采用钻探法探明

25、极址土壤类型、覆盖层厚度。勘探范围应满足接地极布置要求,勘探深度宜至基岩。5.2.13 测量地形图。测量1:1000或1:2000地形图,测量范围应满足接地极布置要求。5.3 设计取值5.3.1 对土壤参数的设计取值,一般应以实际测量数据为依据,通过分析、统计和整理,合理取值。5.3.2 证测量数据可信度大于95%。如果在同一地点测量读取了N个测量数据(X1,X2,XN),剔除不合格的测量数据后,其平均值Xp和标准偏差可由式(3)和式(4)计算。 (3) (4)土壤参数取值可按式(5)计算。 X=Xp1.96 (5)式中:对土壤电阻率、温度取正;对热导率、热容率取负。5.3.3 力求使极址计算

26、模型符合实际条件。如果接地极址土壤参数分布不均匀,为了分析计算方便,可对极址计算模型做适当的等效简化。但按等效简化后的极址模型计算,接地极溢流密度、最高温度、最大跨步电压、接地电阻、电位升及其分布等特征参数不应受到明显影响。一般情况下,如极址位于平丘地区,可采用二维水平分层极址模型;如极址位于山区、海滨、河流等地质复杂地区,宜采用三维极址模型。5.3.4 土壤电阻率参数设计取值应考虑不利季节的影响,即按式(5)计算后,应加乘季节系数。6 电极材料6.0.1 直流接地极材料系指馈电元件,石油焦炭及导流线(电缆)等主要材料6.0.2 选择馈电元件材料应根据导电性能良好,抗腐蚀性强,机械加工方便,无

27、毒负作用,经济性好的原则,结合工程和市场条件,通过技术经济比较确定。6.0.3 用于直流接地极的馈电元件宜为铁,高硅铸铁、高硅铬铁、石墨等材料。要求铁的含碳量宜小于0.5%,石墨材料必须经过亚麻油浸泡处理,高硅铸铁和高硅铬铁化学成分应符合表6-1要求。表6-1 铁硅合金电极成份(%)化学成份高硅铸铁高硅铬铁硅(Si)14.2515.2514.2515.25锰(Mn)0.50.5碳(C)1.41.4磷(P)0.250.25硫(S)0.182.577.56.0.4 在土壤和地下水中pH值在311间,Cl-+SO42- 离子含量小于500mg/L情况下,且阳极运行寿命小于40106Ah的陆地接地极,

28、馈电元件宜采用铁材料。6.0.5 如腐蚀寿命大于40106Ah或土壤的pH值小于3,馈电元件宜采用高硅铸(铬)铁或石墨。6.0.6 对海洋电极或海岸电极,馈电元件应采用高硅铬铁。6.0.7 如选用高硅铸铁或高硅铬铁作馈电元件,要求其成品带有引流电缆。6.0.8 石油焦炭须经过1350温度的煅烧,驱散其挥发成分。要求煅烧后的石油焦炭的化学成分应符合表6-2所列数值。表6-2 煅烧后的焦炭的化学成分物 质 名 称占 有 比 例碳95%湿度0.1%挥发性0.5%硫 1 %铁0.04%硅0.06%灰及其它 1 %6.0.9 用于直流接地极的石油焦炭成品,其物理特性应符合表6-3要求。表6-3 接地极石

29、油焦炭的物理特性颗粒成分筛 号占 有 比 例1325/cm5%2540/cm10%15%4080/cm20%25%80/cm25%30%100/cm余量物理特性电阻率(当容重为1.1 g/cm3时)* 1.0 J/(cm3.)* 采用接地电阻降阻剂暂行技术条例提供的测量方法6.0.10 接地极焦炭应使用塑料薄膜和编织袋包装,封口牢固可靠,防止受污染。6.0.11 所有的地下电缆宜采用交联聚乙烯绝缘铜芯电缆,且芯对地标称额定电压不应低于6kV。7 电极布置及其尺寸7.1 电极布置7.1.1 陆地接地极馈电元件布置类型分为水平(沟)型和垂直(井)型,应根据土壤电阻率参数分布情况和地形条件,通过技术经济比较选择确定接地极的布置类型。一般情况下,如深层(10m以下)土壤电阻率明显低于浅层或地形明显崎岖不平,宜采用垂直井型布置;反之,宜采用水平沟型布置。7.1.2 水平型电极宜采用方形或矩形断面,垂直型电极断面宜为圆形;馈电元

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2