ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:95.74KB ,
资源ID:8691465      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bingdoc.com/d-8691465.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(伺服电机的PLC控制方法Word文档格式.docx)为本站会员(b****6)主动上传,冰点文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰点文库(发送邮件至service@bingdoc.com或直接QQ联系客服),我们立即给予删除!

伺服电机的PLC控制方法Word文档格式.docx

1、2Pr4A)伺服电机所配编码器如果为:2500p/r5线制增量式编码器,则编码器分辨率为10000p/r如您连接伺服电机轴的丝杆间距为20mm,您要做到控制器发送一个脉冲伺服电机行走长度为一个丝(0.01mm)。计算得知:伺服电机转一圈需要2000个脉冲。(每转一圈所需脉冲确定了,脉冲频率与伺服电机的速度的关系也就确定了)三个参数可以设定为:Pr4A=0,Pr46=10000,Pr4B=2000,约分一下则为:Pr4A=0,Pr46=100,Pr4B=20。从上面的叙述可知:设定Pr46,Pr4A,Pr4B这三个参数是根据我们控制器所能发送的最大脉冲频率与工艺所要求的精度。在控制器的最大发送脉

2、冲频率确定后,工艺精度要求越高,则伺服电机能达到的最大速度越低。做好上面的工作,编制好PLC程序,我们就可以控制伺服运转了。PLC触摸屏直接控制伺服电机程序设计 摘要:以三菱公司的FX3U-48MT-ES-A作为控制元件,GT1155-QFBD-C作为操作元件直接控制三菱伺服电机的具体程序设计。关键词:PLC; 触摸屏; 伺服电机 伺服电机又称执行电机,它是控制电机的一种。它是一种用电脉冲信号进行控制的,并将脉冲信号转变成相应的角位移或直线位移和角速度的执行元件。根据控制对象的不同,由伺服电机组成的伺服系统一般有三种基本控制方式,即位置控制、速度控制、力矩控制。本系统我们采用位置控制。 PLC

3、在自动化控制领域中,应用十分广泛。尤其是近几年PLC在处理速度,指令及容量、单轴控制方面得到飞速的发展,使得PLC在控制伺服电机方面也变得简单易行。1控制系统中元件的选型1.1PLC的选型 因为伺服电机的位移量与输入脉冲个数成正比,伺服电机的转速与脉冲频率成正比,所以我们需要对电机的脉冲个数和脉冲频率进行精确控制。且由于伺服电机具有无累计误差、跟踪性能好的优点,伺服电机的控制主要采用开环数字控制系统,通常在使用时要搭配伺服驱动器进行控制,而伺服电机驱动器采用了大规模集成电路,具有高抗干扰性及快速的响应性。在使用伺服驱动器时,往往需要较高频率的脉冲,所以就要求所使用的PLC能产生高频率脉冲。三菱

4、公司的FX3U晶体管输出的PLC可以进行6点同时100 kHz高速计数及3轴独立100 kHz的定位功能,并且可以通过基本指令0.065 s、PCMIX值实现了以4.5倍的高速度,完全满足了我们控制伺服电机的要求,所以我们选用FX3U-48MT-ES-A型PLC。1.2伺服电机的选型 在选择伺服电机和驱动器时,只需要知道电机驱动负载的转距要求及安装方式即可,我们选择额定转距为2.4 Nm,额定转速为3 000 r/min,每转为131 072 p/rev分辨率的三菱公司HF-KE73W1-S100伺服电机,与之配套使用的驱动器我们选用MR-E-70A-KH003伺服驱动器。三菱的此款伺服系统具

5、有500 Hz的高响应性,高精度定位,高水平的自动调节,能轻易实现增益设置,且采用自适应振动抑止控制,有位置、速度和转距三种控制功能,完全满足要求。 同时我们采用三菱GT1155-QFBD-C型触摸屏,对伺服电机进行自动操作控制。2 PLC控制系统设计 我们需要伺服电机实现正点、反点、原点回归和自动调节等动作,另外为确保本系统的精确性我们增加编码器对伺服电机进行闭环控制。PLC控制系统I/O接线图如图1。图1 I/O接线图 上图中的公共端的电源不能直接接在输入端的24 V电源上。根据控制要求设计了PLC控制系统梯形图如图2。图2 梯形图 M806控制伺服急停,M801控制伺服电机原点回归,M8

6、02控制伺服正点,M803控制伺服反点,M804为自动调节,M805为压力校正即编码器的补偿输入。在电机运行前需要首先进行原点回归,以确保系统的准确性和稳定性,当M50和M53同时接通时,伺服电机以2 kHz的速度从Y0输出脉冲,开始做原点回归动作,当碰到近点信号M30ON时,变成寸动速度1 kHz,从Y0输出脉冲直到M30=OFF后停止。M30是在自动调节时,电机转动的角度与零点相等时为ON。电机在进行正反点时,我们采用FX3U具有的专用表格定位指令DTBL S1 S2;在使用表格定位之前,我们首先要在梯形图左边的PLC parameter(PLC参数)中进行定位设定。正反点控制我们采用指令

7、DRVA S1 S2 D1 D2绝对定位指令。在自动运行时,我们利用PLC内强大的浮点运算指令,根据系统的多方面参数进行计算;在操作时,我们只需要在触摸屏上设定参数,伺服电机便根据程序里的运算公式转化成为脉冲信号输出到驱动器,驱动器给电机信号运转。在伺服电机运行的过程中为确保电机能达到我们需要的精度,我们采用增量式编码器与伺服电机形成闭环控制,我们把计算到的角度与编码器实际测量角度进行比较,根据结果调整伺服电机的脉冲输出,从而实现高精度定位。整个程序我们采用步进指令控制(也可以采用一般指令控制),简单方便。3 伺服系统设置3.1伺服驱动器的接线 伺服系统的接线很简单,我们只需要按照规定接入相对

8、应的插头即可。将三相电源线L1,L2,L3插头接入CPN1,将伺服电机插头接入CN2,将编码器插头接入CNP2,控制线插头接入CN1。我们在调试程序时需要用伺服电机的专用软件,通过RS422接口接到伺服系统的CN3上即可。对于CN1控制线接法如表1。表1控制线接法名称VINOPCRESEMGALMSGPPNP引脚号12389132325接线110Y2Y160Y0Y33.2伺服驱动器的参数设定 系统采用定位控制。三菱MR-E系列的伺服驱动器,主要有两组参数,一组为基本参数,另一组为扩展参数,根据本系统要求,我们主要设定基本参数,主要有NO.0,NO.1,NO.2,NO.3,NO.4,NO.5,N

9、O.7,NO.18,NO.19,扩展参数要根据具体情况进行设定。同时我们也可以通过伺服设置软件SETUP221E进行参数设置。我们在伺服电机进行调试过程中建议先设为速度模式,进行伺服电机的点动测试。4 触摸屏程序设计 建立初始画面,在画面上分别设置按钮开关,在开关上分别写上,压力+、压力-、原点回归、自动调节、压力校正、伺服急停等字样,其中继电器的对应情况如上所写。控制画面如图3和图4。图3画面设置图4参数显示 本系统同时还设置有手动调节功能,确保在自动调节出现问题时及时补救。触摸屏上我们设置了指示灯,可显示此时的工作状态。同时我们在手动和自动指示灯的中间部分,设置了脉冲的输出指示,即伺服电机

10、的运转指示,当有脉冲输出时,会有“脉冲输出中”的红色指示灯出现。当无红色指示灯显示时,即表示电机有故障,此时操作者需根据伺服驱动器上显示的异常字母进行故障查询,简单方便。5 总结 利用PLC可以直接对伺服电机进行位置和速度控制,无需增加定位模块,节约成本。PLC的处理速度高,输出脉冲的频率也很高,而且指令也很简单,在系统联机的情况下也可方便地进行所有指令的修改工作。本系统通过触摸屏进行调节控制,使操作简单,也减少了在运行过程中的故障查找环节,大大提高了工作效率。系统运用一年多来,从未出现故障,稳定性好,且定位精确,为用户节约很多时间。我想用三菱PLC控制两台伺服电动机,但是对伺服不是很了解。只

11、是知道一些模糊的概念,有几个问题困扰,请高手指点一下:1.伺服放大器跟步进控制器一样需要输入方向脉冲和脉冲输入。伺服电机是不是跟步进电机一样,脉冲的个数决定电机的旋转角度,脉冲的频率决定电机的转速?如果是这样的话,那么PLC控制伺服不就和步进一样了吗。2.FX 在控制这类问题时,特殊功能模块是必需的吗?FX1S/1N中的FNC N0.155-159定位指令能够代替特殊功能模块吗?如果不能代替,FX2N中没有这些指令,具体的选用用FX1S,还是FX2N好呢?3.特殊功能模块FX2N-1PG、FX2N-10PG、FX2N-10GM和FX2N20GM选那个呢?答案:1.步进和伺服是一样控制的,这是对

12、的,只是伺服是带编码器回馈的,也就是闭环控制,步进是开环控制的2.特殊功能模块是必需的吗?不是必需的,PLC本体也是可以发脉冲的,FX2N有些指令没有,所以如果是想用本体控制的话建议用1N的,其脉冲频率最高可达100K,2N的只能20K1PG是最高100K的脉冲频率输出FX2N-10PG是最高1MHZ的脉冲频率输出 FX2N-10GM是独立的单轴定位模块,可以没有PLC单独运行,也可以当PLC特殊模块FX2N20GM可以控制两轴,实现圆弧和直线运动PLC伺服控制器伺服电机等电路问题详解问题:一种电路:PLC-PLC模块-伺服控制器-伺服电机 二种电路: PLC-伺服控制器-伺服电机两者控制方式

13、有什么不同?第一种我看别人就从PLC接一个COM和24V和Y0到伺服控制器 Y0那也是0V了啊。那脉冲怎么输入。 那第二种模块向伺服控制器发送的是什么信号,第二种怎么实现精确定位的?浙江伺服维修:第一种:其实定位模块比如三菱的A系列和Q系列都是有定位模块的他们是直接根据PLC的CPU模块传过来的运行命令数据直接转换成控制伺服的方向和脉冲,但定位模块内部接口本身就是为控制伺服用的,所以他内部还有很多可以和伺服进行数据交换的,比如伺服报警信号输出,伺服使能,伺服定位结束.而控制伺服最基本的不过2中方式:(1)脉冲(对应的伺服位置控制方式和转距控制方式)(2)、模拟电压(对应伺服的速度控制方式,如果

14、直接用PLC控制的话PLC很少有OUT口可以输出模拟电压的所以几乎所有的PLC直接带伺服驱动器都是位置控制)而定位模块一般可以有模拟电压方式输出,和脉冲输出(当然这个要看定位模块的型号比如三菱A1SD70模块就是个电压输出模式,而A1SD75模块就是脉冲方式输出)第二种:因为目前大多数PLC都是带有高速脉冲输出的一般是Y0,Y1两个OUT口,象三菱FX系列的这两个口可以输出最高50KHZ的脉冲,所以,直接计算好伺服电机的转数或要走的距离,按比例发脉冲给伺服驱动器就可以了,当然还要有个方向信号控制电机顺转还是逆转,所以还需要1个控制方向的OUT端,这个口可以是个非高速口比如Y3,Y4.象你说的从

15、PLC接1个COM、24V和Y0的那种其实就是我所说的这个方式,但你这个怕是电机没有正反转,或直接把正反信号在开关上接过去了。伺服马达的原理和应用 1:伺服马达内部包括了一个小型直流马达;一组变速齿轮组;一个反馈可调电位器;及一块电子控制板。其中,高速转动的直流马达提供了原始动力,带动变速(减速)齿轮组,使之产生高扭力的输出,齿轮组的变速比愈大,伺服马达的输出扭力也愈大,也就是说越能承受更大的重量,但转动的速度也愈低 2、微型伺服马达的工作原理 一个微型伺服马达是一个典型闭环反馈系统减速齿轮组由马达驱动,其终端(输出端)带动一个线性的比例电位器作位置检测,该电位器把转角坐标转换为一比例电压反馈

16、给控制线路板,控制线路板将其与输入的控制脉冲信号比较,产生纠正脉冲,并驱动马达正向或反向地转动,使齿轮组的输出位置与期望值相符,令纠正脉冲趋于为0,从而达到使伺服马达精确定位的目的。 3、如何控制伺服马达 标准的微型伺服马达有三条控制线,分别为:电源、地及控制。电源线与地线用于提供内部的直流马达及控制线路所需的能源,电压通常介于4V6V之间,该电源应尽可能与处理系统的电源隔离(因为伺服马达会产生噪音)。甚至小伺服马达在重负载时也会拉低放大器的电压,所以整个系统的电源供应的比例必须合理。 4、伺服马达的电源引线 电源引线有三条,如图中所示。伺服马达三条线中红色的线是控制线,接到控制芯片上。中间的

17、是SERVO工作电源线,一般工作电源是5V。 第三条是地线 5、伺服马达的运动速度 伺服马达的瞬时运动速度是由其内部的直流马达和变速齿轮组的配合决定的,在恒定的电压驱动下,其值唯一。但其平均运动速度可通过分段停顿的控制方式来改变,例如,我们可把动作幅度为90o的转动细分为128个停顿点,通过控制每个停顿点的时间长短来实现0o90o变化的平均速度。对于多数伺服马达来说,速度的单位由“度数/秒”来决定。 6、使用伺服马达的注意事项 除非你使用的是数码式的伺服马达,否则以上的伺服马达输出臂位置只是一个不准确的大约数。 普通的模拟微型伺服马达不是一个精确的定位器件,即使是使用同一品牌型号的微型伺服马达

18、产品,他们之间的差别也是非常大的,在同一脉冲驱动时,不同的伺服马达存在#177;10o的偏差也是正常的。 正因上述的原因,不推荐使用小于1ms及大于2ms的脉冲作为驱动信号,实际上,伺服马达的最初设计表也只是在#177;45o的范围。而且,超出此范围时,脉冲宽度转动角度之间的线性关系也会变差。 要特别注意,绝不可加载让伺服马达输出位置超过#177;90o的脉冲信号,否则会损坏伺服马达的输出限位机构或齿轮组等机械部件。 由于伺服马达的输出位置角度与控制信号脉冲宽度没有明显统一的标准,而且其行程的总量对于不同的厂家来说也有很大差别,所以控制软件必须具备有依据不同伺服马达进行单独设置的功能。伺服控制

19、器和伺服驱动器相关知识 相对于桌上型电脑(Desktop)与笔记型电脑(Notebook)而言,伺服器(Server)是许多人常见的名词,实际接触的经验却少之又少。然而伺服器系统在人类的日常生活中普见于于许多应用,我们经常接触的资讯,几乎都是伺服器运算之后所提供的结果。 伺服器的意义,就是要提供处理过的资讯,服务别人(Server for Service),让透过网路连结伺服器的其他终端机(Client),可以迅速地得到需要的资料或结果,输出给需要的对象。一般个人所使用的电脑,只需要服务一个使用者的需求就够了,但是伺服器却必须服务所有人,伺服器必须在或者很短的时间内,容纳来自四面八方的工作要求

20、,并且要马上回覆结果、送出答案,这是一般个人电脑所做不到的。 因此,伺服器的最大特点,就是运算能力须非常强大,在短时间内就要完成所有运算工作,即使是一部简单的伺服器系统,至少就要有两颗中央处理器同时工作。 例如,以Intel®所生产的Xeon?处理器而言,内建NetBurst?科技,伺服器的运算相当于Pentium& 4等级的能力;更重要的,Xeon?支援Hyper-Threading?技术,两颗Xeon?,就等于有四颗中央处理器同时在工作,一下子增加两倍的运算能力。此外,伺服器对外连接的设备也是重量级的,以Xeon?等级的伺服器而言,网路频宽已发展到Gigabit Ethernet,

21、是个人电脑的一百倍;SCSI连结也是标准配备,这也是个人电脑少有的规格;而伺服器更厉害的,就是可以连结磁碟阵列系统(RAID),一口气可以串接八颗以上的大容量硬碟,这些配备都是个人电脑所望尘莫及,高成本的设备都是为多人的工作所设计预备的。 伺服器也不是样样规格都胜过一般个人电脑,伺服器的特点是拥有强大运算能力以立即处理大量资讯,并藉著昂贵周边设备一起工作;但是伺服器的影像处理能力就不需要很强,许多系统管理者只需要类似DOS的介面软体来操作就可以了;另外伺服器也不太需要USB来上下载一些个人化产品的资讯,所以对USB的支援也不是很强。例如Intel&专用在伺服器系统上的E7500或E7501晶片

22、组,北桥部分连AGP都没有支援,一般个人电脑上的显示卡根本没有机会使用在伺服器上;南桥部分的USB只定义到1.1版本,跟个人电脑用得很习惯的2.0版本相比,算是旧时代的规格。最近几年的伺服器发展,就是网际网路与电信业的应用,尤其网际网路早已从资料搜寻,深入到一般人生活中,例如金融跟财经、网路银行跟网路信用卡的使用,都必须*著伺服器强大的运算能力,才能做到资料高度保密不易被破解的程度。资讯流通的发展与需求并未随著景气不好而停歇,未来伺服器的发展与应用范围可能会愈渐广大,这也代表了资讯基础建设将可以随著伺服器的发展而提供人类更好的生活。伺服控制系统概述 伺服控制系统用来精确地跟随或复现某个过程的反

23、馈控制系统。又称随动系统。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。伺服控制系统最初用于船舶的自动驾驶、火炮控制和指挥仪中,后来逐渐推广到很多领域,特别是自动车床、天线位置控制、导弹和飞船的制导等。采用伺服系统主要是为了达到下面几个目的:以小功率指令信号去控制大功率负载。火炮控制和船舵控制就是典型的例子。在没有机械连接的情况下,由输入轴控制位于远处的输出轴,实现远距同步传动。使输出机械位移精确地跟踪电信号,如记录和指示

24、仪表等。衡量伺服控制系统性能的主要指标有频带宽度和精度。频带宽度简称带宽,由系统频率响应特性来规定,反映伺服系统的跟踪的快速性。带宽越大,快速性越好。伺服系统的带宽主要受控制对象和执行机构的惯性的限制。惯性越大,带宽越窄。一般伺服系统的带宽小于15赫,大型设备伺服系统的带宽则在12赫以下。自20世纪70年代以来,由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,使带宽达到50赫,并成功应用在远程导弹、人造卫星、精密指挥仪等场所。伺服系统的精度主要决定于所用的测量元件的精度。因此,在伺服系统中必须采用高精度的测量元件,如精密电位器、自整角机和旋

25、转变压器等。此外,也可采取附加措施来提高系统的精度,例如将测量元件(如自整角机)的测量轴通过减速器与转轴相连,使转轴的转角得到放大,来提高相对测量精度。采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。伺服控制系统按所用驱动元件的类型可分为机电伺服系统、液压伺服系统和气动伺服系统。使用运动控制卡以速度方式控制伺服电机的一般步骤使用运动控制卡以速度方式控制伺服电机的一般步骤如下:1、初始化参数在接线之前,先初始化参数。在控制卡上:选好控制方式;将PID参数清零;让控制卡上电时默认使能信号关闭;将此状态保存,确保控制

26、卡再次上电时即为此状态。在伺服电机驱动器上:设置控制方式;设置使能由外部控制;编码器信号输出的齿轮比;设置控制信号与电机转速的比例关系。一般来说,建议使伺服工作中的最大设计转速对应9V的控制电压。比如,松下是设置1V电压对应的转速,出厂值为500,如果你只准备让电机在1000转以下工作,那么,将这个参数设置为111。2、接线将控制卡断电,连接控制卡与伺服驱动器之间的信号线。以下的线是必须要接的:控制卡的模拟量输出线、使能信号线、伺服驱动器输出的编码器信号线(当然,电机和驱动器之间的线我认为已经接好了)。复查接线没有错误后,电机驱动器和控制卡(以及PC)上电。此时电机应该不动,而且可以用外力轻松

27、转动,如果不是这样,检查使能信号的设置与接线。用外力转动电机,检查控制卡是否可以正确检测到电机位置的变化,否则检查编码器信号的接线和设置3、试方向对于一个闭环控制系统,如果反馈信号的方向不正确,后果肯定是灾难性的。通过控制卡打开伺服的使能信号。这时电机应该以一个较低的速度转动,这就是传说中的“零漂”。一般控制卡上都会有抑制零漂的指令或参数。使用这个指令或参数,看电机的转速和方向是否可以通过这个指令(参数)控制。如果不能控制,检查模拟量接线及控制方式的参数设置。确认给出正数,电机正转,编码器计数增加;给出负数,电机反转转,编码器计数减小。如果电机带有负载,行程有限,不要采用这种方式。测试不要给过大的电压,建议在1V以下。如果方向不一致,可以修改控制卡或电机驱动器上的参数,使其一致。4、抑制零漂在闭环控制过程中,零漂的存在会对控制效果有一定的影响,最好将其抑制住。使用控制卡或伺服上抑制零

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2