氯苯板式精馏塔设计毕业论文文档格式.doc

上传人:聆听****声音 文档编号:1006113 上传时间:2023-04-30 格式:DOC 页数:34 大小:881KB
下载 相关 举报
氯苯板式精馏塔设计毕业论文文档格式.doc_第1页
第1页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第2页
第2页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第3页
第3页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第4页
第4页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第5页
第5页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第6页
第6页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第7页
第7页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第8页
第8页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第9页
第9页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第10页
第10页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第11页
第11页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第12页
第12页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第13页
第13页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第14页
第14页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第15页
第15页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第16页
第16页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第17页
第17页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第18页
第18页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第19页
第19页 / 共34页
氯苯板式精馏塔设计毕业论文文档格式.doc_第20页
第20页 / 共34页
亲,该文档总共34页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

氯苯板式精馏塔设计毕业论文文档格式.doc

《氯苯板式精馏塔设计毕业论文文档格式.doc》由会员分享,可在线阅读,更多相关《氯苯板式精馏塔设计毕业论文文档格式.doc(34页珍藏版)》请在冰点文库上搜索。

氯苯板式精馏塔设计毕业论文文档格式.doc

05

93

4

5

43

19

2.组分的液相密度ρ(kg/m3)

80

ρ

81

79

3

82

70

57

39

028

18

008

97

85

纯组分在任何温度下的密度可由下式计算

苯ρA=912-1.187t

氯苯ρB=1127-1.111t

推荐:

ρA=912.13-1.1886t

推荐:

ρB=1124.4-1.0657t

式中的t为温度,℃。

3.组分的表面张力σ(mN/m)

11

15

31

σ

21

.2

0.6

17

.3

6.8

6.3

5.3

26

.1

5.7

22

.7

2.2

1.6

0.4

双组分混合液体的表面张力

σm可按下式计算:

m

o=σAσB

(x、x

为A、B组分的摩尔分率)

AB

oAxB+σBxA

4.氯苯的汽化潜热

常压沸点下的汽化潜热为35.3×

103kJ/kmol。

纯组分的汽化潜热与温度

的关系可用下式表示:

t

-tö

0.38

2=ç

c2÷

(氯苯的临界温度:

=359.2°

C)

r

-t

÷

c

è

c1ø

5.其他物性数据可查化工原理附录。

摘要

本设计为设计一个精馏塔来进行苯-氯苯混合物的分离,采用连续操作方式的筛板精馏塔。

在常压下,采用泡点进料,连续精馏方式,将原料通过预热器加热至泡点后送入精馏塔内原料液连续加入精馏塔中,以一定得回流比由连续精馏塔的塔顶采出含量合格的苯,由塔底采出氯苯。

并连续收集产物和排出残液氯苯纯度不低于99.8%,塔顶产品苯纯度不低于

98%(质量分数)。

近年来,我国氯苯系列产品产能扩增迅猛,主要品种产能和产量已居世界第一,成为全球氯苯系列产品主要的生产国和供应国,生产能力占全球总生产能力的50%以上。

氯苯系列产品的快速发展,对我国医药、

农药、染料、橡胶助剂、合成新材料等行业的发展也起着举足轻重的作用。

目前国外对、邻硝基氯苯的发展呈现衰减趋势,主要依靠进口国内的对、邻硝基氯苯生产下游精细化学品,如染/颜料、医药、农药等。

关键词:

泡点进料;

精馏塔;

筛板;

设计计算



目录

一、前言1

二、产品与设计方案简介2

(一)产品性质、质量指标2

(二)设计方案简介3

(三)工艺流程及说明3

三、工艺计算及主体设备设计4

(一)全塔的物料衡算4

1)料液及塔顶底产品含苯的摩尔分率4

2)平均摩尔质量4

3)料液及塔顶底产品的摩尔流率4

(二)塔板数的确定5

1)理论塔板数的求取5

2)实际塔板数7

(三)塔的精馏段操作工艺条件及相关物性数据的计算7

1)平均压强7

2)平均温度7

3)平均分子量7

4)平均密度8

5)液体的平均表面张力8

6)液体的平均粘度9

(四)精馏段的汽液负荷计算9

(五)塔和塔板主要工艺结构尺寸的计算9

1)塔径9

2)塔板工艺结构尺寸的设计与计算10

(六)塔板上的流体力学验算12

1)气体通过筛板压降和的验算12

2)雾沫夹带量的验算14

3)漏液的验算14

4)液泛的验算14

(七)塔板负荷性能图14

1)雾沫夹带线

(1)14

2)液泛线

(2)15

3)液相负荷上限线(3)16

4)漏液线(气相负荷下限线)(4)16

5)液相负荷下限线(5)16

(八)精馏塔的设计计算结果汇总一览表18

(九)精馏塔的附属设备与接管尺寸的计算19

(十)主要符号说明20

四、对设计过程的评述和感受21

一、前言

课程设计是本课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程实际问题复杂性、学习化工设计基本知识的初次尝试。

通过课程设计,要求学生能综合利用本课程和前修课程的基本知识,进行融会贯通的独立思考,在规定的时间内完成指定的化工设计任务,从而得到化工工程设计的初步训练。

通过课程设计,要求学生了解工程设计的基本内容,掌握化工设计的程序和方法,培养学生分析和解决工程实际问题的能力。

同时,通过课程设计,还可以使学生树立正确的设计思想,培养实事求是、严肃认真、高度责任感的工作作风。

课程设计是增强工程观念,培养提高学生独立工作能力的有益实践。

本设计采用连续精馏分离苯-氯苯二元混合物的方法。

连续精馏塔在常压下操作,被分离的苯-氯苯二元混合物由连续精馏塔中部进入塔内,以一定得回流比由连续精馏塔的塔顶采出含量合格的苯,由塔底采出氯苯。

氯苯纯度不低于99.8%,塔顶产品苯纯度不低于98%(质量分数)。

高径比很大的设备称为塔器。

塔设备是化工、炼油生产中最重要的设备之一。

它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。

常见的、可在塔设备中完成的单元操作有:

精馏、吸收、解吸和萃取等。

此外,工业气体的冷却与回收,气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿、减湿等。

在化工或炼油厂中,塔设备的性能对于整个装置的产品产量质量生产能力和消耗定额,以及三废处理和环境保护等各个方面都有重大的影响。

据有关资料报道,塔设备的投资费用占整个工艺设备投资费用的较大比例。

因此,塔设备的设计和研究,受到化工炼油等行业的极大重视。

作为主要用于传质过程的塔设备,首先必须使气(汽)液两相充分接触,以获得较高的传质效率。

此外,为了满足工业生产的需要,塔设备还得考虑下列各项传质效率。

此外,为了满足工业生产的需要,塔设备还得考虑下列各项要求:

(1)生产能力大.在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液或液泛等破坏正常操作的现象。

(2)操作稳定、弹性大。

当塔设备的气(汽)液负荷量有较大的波动时,仍能在较高的传质效率下进行稳定的操作。

并且塔设备应保证能长期连续操作。

(3)流体流动的阻力小。

即流体通过塔设备的压力降小。

这将大大节省生产中的动力消耗,以及降低经常操作费用。

对于减压蒸馏操作,较大的压力降还使系统无法维持必要的真空度。

(4)结构简单、材料耗用量小、制造和安装容易。

这可以减少基建过程中的投资费用。

(5)耐腐蚀和不易堵塞,方便操作、调节和检修。

事实上,对于现有的任何一种塔型,都不可能完全满足上述所有要求,仅是在某些方面具有独到之处.

根据设计任务书,此设计的塔型为筛板塔。

筛板塔是很早出现的一种板式塔。

五十年代起对筛板塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。

与泡罩塔相比,筛板塔具有下列优点:

生产能力大20-40%,塔板效率高10-15%,压力降低30-50%,而且结构简单,塔盘造价减少40%左右,安装、维修都较容易。

从而一反长期的冷落状况,获得了广泛应用。

近年来对筛板塔盘的研究还在发展,出现了大孔径筛板(孔径可达20-25mm),导向筛板等多种形式。

筛板塔盘上分为筛孔区、无孔区、溢流堰及降液管等几部分.工业塔常用的筛孔孔径为3-8mm,按正三角形排列.空间距与孔径的比为2.5-5.近年来有大孔径(10-25mm)筛板的,它具有制造容易,不易堵塞等优点,只是漏夜点低,操作弹性小。

筛板塔的特点如下:

(1)结构简单、制造维修方便。

(2)生产能力大,比浮阀塔还高。

(3)塔板压力降较低,适宜于真空蒸馏。

(4)塔板效率较高,但比浮阀塔稍低。

(5)合理设计的筛板塔可是具有较高的操作弹性,仅稍低与泡罩塔。

(6)小孔径筛板易堵塞,故不宜处理脏的、粘性大的和带有固体粒子的料液。

二、产品与设计方案简介

(一)产品性质、质量指标

产品性质:

有杏仁味的无色透明、易挥发液体。

密度1.105g/cm3。

沸点131.6℃。

凝固点-45℃。

折射率1.5216(25℃)。

闪点29.4℃。

燃点637.8℃,折射率1.5246,粘度(20℃)0.799mPa·

s,表面张力33.28×

10-3N/m.溶解度参数δ=9.5。

溶于乙醇、乙醚、氯仿、苯等大多数有机溶剂,不溶于水。

易燃,蒸气与空气形成爆炸性混合物,爆炸极限1.3%-7.1%(vol)。

溶于大多数有机溶剂,不溶于水。

常温下不受空气、潮气及光的影响,长时间沸腾则脱氯。

蒸气经过红热管子脱去氢和氯化氢,生成二苯基化合物。

有毒.在体内有积累性,逐渐损害肝、肾和其他器官。

对皮肤和粘膜有刺激性.对神经系统有麻醉性,LD502910mg/kg,空气中最高容许浓度50mg/m3。

遇高温、明火、氧化剂有燃烧爆炸的危险。

质量指标:

氯苯纯度不低于99.8%,塔顶产品苯纯度不低于98%,原料液中苯38%。

(以上均为质量分数)

(二)设计方案简介

1.精馏方式:

本设计采用连续精馏方式。

原料液连续加入精馏塔中,并连续收集产物和排出残液。

其优点是集成度高,可控性好,产品质量稳定。

由于所涉浓度范围内乙醇和水的挥发度相差较大,因而无须采用特殊精馏。

2.操作压力:

本设计选择常压,常压操作对设备要求低,操作费用低,适用于苯和氯苯这类非热敏沸点在常温(工业低温段)物系分离。

3.塔板形式:

根据生产要求,选择结构简单,易于加工,造价低廉的筛板塔,筛板塔处理能力大,塔板效率高,压降教低,在苯和氯苯这种黏度不大的分离工艺中有很好表现。

4.加料方式和加料热状态:

设计采用泡点进料,将原料通过预热器加热至泡点后送入精馏塔内。

5.由于蒸汽质量不易保证,采用间接蒸汽加热。

6.再沸器,冷凝器等附属设备的安排:

塔底设置再沸器,塔顶蒸汽完全冷凝后再冷却至泡点下一部分回流入塔,其余部分经产品冷却器冷却后送至储灌。

塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。

(三)工艺流程及说明

38%氯苯

原料储存

原料预热

精馏

再沸

99.8%氯苯储存

分配

冷凝

冷却

98%苯储存

首先,苯和氯苯的原料混合物进入原料罐,在里面停留一定的时间之后,通过泵进入原料预热器,在原料预热器中加热到泡点温度,然后,原料从进料口进入到精馏塔中。

因为被加热到泡点,混合物中既有气相混合物,又有液相混合物,这时候原料混合物就分开了,气相混合物在精馏塔中上升,而液相混合物在精馏塔中下降。

气相混合物上升到塔顶上方的冷凝器中,这些气相混合物被降温到泡点,其中的液态部分进入到塔顶产品冷却器中,停留一定的时间然后进入苯的储罐,而其中的气态部分重新回到精馏塔中,这个过程就叫做回流。

液相混合物就从塔底一部分进入到塔底产品冷却器中,一部分进入再沸器,在再沸器中被加热到泡点温度重新回到精馏塔。

塔里的混合物不断重复前面所说的过程,而进料口不断有新鲜原料的加入。

最终,完成苯与氯苯的分离。

三、工艺计算及主体设备设计

(一)全塔的物料衡算

1)料液及塔顶底产品含苯的摩尔分率

苯和氯苯的相对摩尔质量分别为78.11和112.61kg/kmol。

2)平均摩尔质量

3)料液及塔顶底产品的摩尔流率

依题给条件:

一年以300天,一天以24小时计,有:

,全塔物料衡算:

(二)塔板数的确定

1)理论塔板数的求取

苯-氯苯物系属于理想物系,可采用梯级图解法(M·

T法)求取,步骤如下:

1.根据苯-氯苯的相平衡数据,利用泡点方程和露点方程求取

依据,,将所得计算结果列表如下:

温度,(℃)

90

100

110

120

130

131.8

1025

1350

1760

2250

2840

2900

氯苯

148

205

293

400

543

719

两相摩尔分率

x

0.677

0.442

0.265

0.127

0.019

y

0.913

0.785

0.614

0.376

0.071

本题中,塔内压力接近常压(实际上略高于常压),而表中所给为常压下的相平衡数据,因为操作压力偏离常压很小,所以其对平衡关系的影响完全可以忽略。

2.确定操作的回流比R

将1.表中数据作图得曲线及曲线。

在图上,因,查得,而,。

故有:

考虑到精馏段操作线离平衡线较近,故取实际操作的回流比为最小回流比的2倍,即:

3.求理论塔板数

精馏段操作线:

提馏段操作线为过和两点的直线。

苯-氯苯物系精馏分离理论塔板数的图解

苯-氯苯物系的温度组成图

图解得块(不含釜)。

其中,精馏段块,提馏段块,第5块为加料板位置。

2)实际塔板数

1.全塔效率

选用公式计算。

该式适用于液相粘度为0.07~1.4mPa·

s的烃类物系,式中的为全塔平均温度下以进料组成表示的平均粘度。

塔的平均温度为0.5(80+131.8)=106℃(取塔顶底的算术平均值),在此平均温度下查化工原理附录11得:

,。

2.实际塔板数(近似取两段效率相同)

精馏段:

块,取块

提馏段:

总塔板数块。

(三)塔的精馏段操作工艺条件及相关物性数据的计算

1)平均压强

取每层塔板压降为0.7kPa计算。

塔顶:

加料板:

平均压强

2)平均温度

查温度组成图得:

塔顶为80℃,加料板为89℃。

3)平均分子量

,(查相平衡图)

4)平均密度

1.液相平均密度

进料板:

2.汽相平均密度

5)液体的平均表面张力

(80℃)

(89℃)

6)液体的平均粘度

查化工原理附录11,在80℃下有:

(四)精馏段的汽液负荷计算

汽相摩尔流率

汽相体积流量

液相回流摩尔流率

液相体积流量

冷凝器的热负荷

(五)塔和塔板主要工艺结构尺寸的计算

1)塔径

1.初选塔板间距及板上液层高度,则:

2.按Smith法求取允许的空塔气速(即泛点气速)

查Smith通用关联图得

负荷因子

泛点气速:

m/s

3.操作气速

4.精馏段的塔径

圆整取,此时的操作气速。

2)塔板工艺结构尺寸的设计与计算

1.溢流装置

采用单溢流型的平顶弓形溢流堰、弓形降液管、平形受液盘,且不设进口内堰。

溢流堰长(出口堰长)

堰上溢流强度,满足筛板塔的堰上溢流强度要求。

出口堰高

对平直堰

由及,查化工原理P111图5-5得,于是:

(满足要求)

降液管的宽度和降液管的面积

由,查化原下P112图5-7得,即:

,,。

液体在降液管内的停留时间

降液管的底隙高度

液体通过降液管底隙的流速一般为0.07~0.25m/s,取液体通过降液管底隙的流速,则有:

(不宜小于0.02~0.025m,本结果满足要求)

2.塔板布置

边缘区宽度与安定区宽度

边缘区宽度:

一般为50~75mm,D>

2m时,可达100mm。

安定区宽度:

规定m时mm;

m时mm;

本设计取mm,mm。

开孔区面积

式中:

3.开孔数和开孔率

取筛孔的孔径,正三角形排列,筛板采用碳钢,其厚度,且取。

故孔心距。

每层塔板的开孔数(孔)

每层塔板的开孔率(应在5~15%,故满足要求)

每层塔板的开孔面积

气体通过筛孔的孔速

4.精馏段的塔高

(六)塔板上的流体力学验算

1)气体通过筛板压降和的验算

1.气体通过干板的压降

式中孔流系数由查P115图5-10得出,。

2.气体通过板上液层的压降

式中充气系数的求取如下:

气体通过有效流通截面积的气速,对单流型塔板有:

动能因子

查化原P115图5-11得(一般可近似取)。

3.气体克服液体表面张力产生的压降

4.气体通过筛板的压降(单板压降)和

(不满足工艺要求,需重新调整参数)。

现对塔板结构参数作重新调整如下:

取mm,mm。

开孔数和开孔率

气体通过筛板压降和的重新验算

气体通过筛板的压降(单板压降)和

(满足工艺要求)

2)雾沫夹带量的验算

,验算结果表明不会产生过量的雾沫夹带。

3)漏液的验算

漏液点的气速

筛板的稳定性系数(不会产生过量液漏)

4)液泛的验算

为防止降液管发生液泛,应使降液管中的清液层高度

成立,故不会产生液泛。

通过流体力学验算,可认为精馏段塔径及塔板各工艺结构尺寸合适,若要做出最合理的设计,还需重选及,进行优化设计。

(七)塔板负荷性能图

1)雾沫夹带线

(1)

(1)

将已知数据代入式

(1)

(1-1)

在操作范围内,任取几个值,依式(1-1)算出对应的值列于下表:

0.000955

0.005

0.01

0.015

0.0181

4.496

4.144

3.835

3.575

3.429

依据表中数据作出雾沫夹带线

(1)

2)液泛线

(2)

(2)

(2-2)

在操作范围内,任取几个值,依式(2-2)算出对应的值列于下表:

3.584

3.363

3.044

2.591

2.217

依据表中数据作出液泛线

(2)

3)液相负荷上限线(3)

(3-3)

4)漏液线(气相负荷下限线)(4)

漏液点气速

,整理得:

(4-4)

在操作范围内,任取几个值,依式(4-4)算出对应的值列于下表:

0.927

0.986

1.035

1.074

1.095

依据表中数据作出漏液线(4)

5)液相负荷下限线(5)

取平堰堰上液层高度m,。

(5-5)

操作气液比

操作弹性定义为操作线与界限曲线交点的气相最大负荷与气相允许最小负荷之比,即:

操作弹性=

(八)精馏塔的设计计算结果汇总一览表

精馏塔的设计计算结果汇总一览表

项目

符号

单位

计算结果

精馏段

提馏段

Pm

kPa

108.1

平均温度

tm

84.5

平均流量

气相

m3/s

1.999

液相

0.00220

实际塔板数

板间距

0.55

塔段的有效高度

Z

3.85

塔径

D

空塔气速

u

0.995

塔板液流型式

单流型

溢流管型式

弓形

堰长

1.12

堰高

0.0594

溢流堰宽度

0.224

底隙高度

0.0246

板上清液层高度

0.070

孔径

mm

孔间距

孔数

n

7113

开孔面积

A0

m2

0.140

筛孔气速

14.28

塔板压降

0.681

液体在降液管中的停留时间

S

45.25

降液管内清液层高度

0.153

雾沫夹带

kg液/kg气

0.00822

负荷上限

雾沫夹带控制

负荷下限

漏液控制

气相最大负荷

3.44

气相最小负荷

0.92

操作弹性

3.74

(九)精馏塔的附属设备与接管尺寸的计算

1)料液预热器

根据原料液进出预热器的热状况和组成首先计算预热器的热负荷Q,然后估算预热器的换热面积A,最后按换热器的设计计算程序执行。

2)塔顶全凝器

全凝器的热负荷前已算出,为1771.45循环水冷却,进出口水温可根据不同地区的具体情况选定后再按换热器的设计程序做设计计算。

3)塔釜再沸器

因为饱和液体进料,故。

即再沸器的热负荷与塔顶全凝器相同。

实际上由于存在塔的热损失(一般情况下约为提供总热量的5~10%)。

再沸器属于两侧都有相变的恒温差换热设备,故再沸器的设计计算与蒸发器同。

4)精馏塔的管口直径

1.塔顶蒸汽出口管径

依据流速选取,但塔顶蒸汽出口流速与塔内操作压力有关,常压可取12~20m/s。

2.回流液管径

回流量前已算出,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2