组织设计典型钛及钛合金的组织与性能综述.docx

上传人:b****3 文档编号:10342695 上传时间:2023-05-25 格式:DOCX 页数:39 大小:352.24KB
下载 相关 举报
组织设计典型钛及钛合金的组织与性能综述.docx_第1页
第1页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第2页
第2页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第3页
第3页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第4页
第4页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第5页
第5页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第6页
第6页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第7页
第7页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第8页
第8页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第9页
第9页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第10页
第10页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第11页
第11页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第12页
第12页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第13页
第13页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第14页
第14页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第15页
第15页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第16页
第16页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第17页
第17页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第18页
第18页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第19页
第19页 / 共39页
组织设计典型钛及钛合金的组织与性能综述.docx_第20页
第20页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

组织设计典型钛及钛合金的组织与性能综述.docx

《组织设计典型钛及钛合金的组织与性能综述.docx》由会员分享,可在线阅读,更多相关《组织设计典型钛及钛合金的组织与性能综述.docx(39页珍藏版)》请在冰点文库上搜索。

组织设计典型钛及钛合金的组织与性能综述.docx

组织设计典型钛及钛合金的组织与性能综述

 

 

(组织设计)典型钛及钛合

金的组织与性能综述

典型钛合金的组织与性能文献查阅总结

1.a型钛合金

a型钛合金中又分为全a型钛合金和近a型钛合金,工业纯钛属于a型钛合金,此外一般a合金含有6%左右的Al和少量中性元素,退火后几乎全部是a相,典型合金包括TA1~TA7合金等;近a型钛合金中除了含有Al和少量中性元素外,还有少量(不超过4%)的稳定元素,如TA15、TA16、TA17等。

1.1工业纯钛

工业纯钛按杂质元素含量分为TA1、TA1ELI、TA1-1、TA2、TA2ELI、

TA3、TA3ELI、TA4、TA4ELI9个牌号,相变点大约为900C。

工业纯钛具有高塑性、适当的强度、良好地耐蚀性以及优良的焊接性能等特点,广泛应用于化工设备、滨海发电装置、海水淡化装置、舰船零部件等,其冷热加工性能好,可生产各种规格的板材、棒材、型材、带材、管材和丝材,一般在退火状态下交货使用。

典型的工业纯钛显微组织如图1-3所示:

图1TA1板材650C/1h退火态组织:

等轴a+少量晶间3

1.1.1TA1钛管的组织与性能[]

[]庞继明,李明利,李明强等.退火温度对TA1钛管材组织和性能的影响[J].钛工业进展.2011,28

(2):

26-28

研究方法:

TA1铸锭经过2500t水压机开坯锻造和1600t卧式挤压机热挤压,最终获得©45X7mm的管坯。

管坯经两辊和三辊管材冷轧机轧制成©12xi.25mm的管材。

将管材置于真空热处理炉中,分别加热至450,475,490,500,550,600,650,700C,保温90min,随炉冷却。

a)TA1钛管的显微组织

图1为冷加工态及不同的温度热处理后的TA1管材横向显微组织。

可以看出,冷加工态的TA1管材组织混乱且有部分晶粒破碎不完全;700C下的组织已完全再结晶、等轴化,与650C的相比晶粒已明显长大。

在相同的保温时间里,随着退火温度的提升,再结晶晶粒逐渐粗化。

图1TA1钛管经不同温度退火处理后的横向显微组织

b)TA1钛管的力学性能

加工态TA1管材的抗拉强度为570MPa,屈服强度为520MPa,延伸率为17%。

图2为经不同温度处理后的TA1管材的力学性能。

由图2可以看出,随着热处理温度的升高,材料的抗拉强度和屈服强度逐渐下降并趋于稳定,延伸率逐渐增大。

图2热处理温度对TA1管材力学性能的影响

1.1.2TA2薄板的组织与力学性能[]

[]蒋建华,丁毅,单爱党.冷轧工业纯钛的微观组织和力学性能[J].中国有色金属学报.2010,20

(1):

58-61

研究方法:

将初始厚度为9mm的二级工业纯钛TA2板异步轧制至1.5mm,其中部分样品同步轧制至0.3mm,实验中异步轧制采用同径异步轧制方法,上下辊径均为130mm,上辊速度固定为33r/min,下辊速度在0~33r/min可调,实验中采用22r/min,异速比为1.5。

当下辊速度也为33r/min,即为同步轧制。

a)TA2薄板不同轧制工艺的力学性能

原始热轧态材料的强度为450MPa,伸长率大于25%。

经过83%的异步轧制后强度达到800MPa,而伸长率则下降到9%,再经过进一步同步轧制后(轧下量80%),强度提高到960MPa,伸长率进一步下降至7%,如图1所示。

通常情况,对称轧制能够使材料产生加工硬化,而晶粒细化效果不大;而不对称轧制由于附加有剪切应力,会使材料中晶粒产生细化效果。

图1不同轧制工艺TA2板的拉伸曲线

b)TA2薄板不同轧制工艺的微观组织

从图2可以看出,轧制前TA2薄板的微观组织,晶粒大小在50卩m左右,晶粒形貌没有明显拉长,在晶粒内部有条状结构,可能为变

形孪晶。

经过异步轧制和同步轧制后的显微组织不能看到明显的晶粒形貌,但是可以看到材料变形后的流变情况,类似于剪切带。

通过TEM对轧制后的组织进行精细结构观察可以看到(图3),

经过83%异步轧制的组织包含了拉长的晶粒和等轴晶粒,平均晶粒尺寸小于1gm,晶粒内部有大量位错。

经过83%异步轧制+80%同步轧制的晶粒基本为等轴晶粒,尺寸在0.5gm左右。

图2TA2薄板的金相组织:

(a)热轧态;(b)83%异步轧制;(c)83%异步轧制+80%同步轧

图3TA2薄板的TEM形貌:

(a)83%异步轧制;(b)83%异步轧制+80%同步轧制

1.1.3TA1高温动态拉伸力学行为[1]

[]HuangW,ZanX,NieX,etal.Experimentalstudyonthedynamictensilebehaviorofapoly-crystalpuretitaniumatelevatedtemperatures[J].MaterSciEng,2007,A443:

33-41[]陈翔,龚明,夏源明.工业纯钛高温动态拉伸力学行为的微观机制[J].中国科学技术大学学报,200939(6):

619-626

a)TA1不同温度和应变速率下的拉伸曲线由准静态下不同温度的加载试验发现,工业纯钛的力学行为除表现出热激活控制的位错滑移机制主导的温度相关性外,在

500~900K之间内还明显受杂质含量的影响,出现屈服应力、流动应力、应变硬化率和断裂应变等随温度的反常变化现象。

目前人们对上述现象的微观解释是工业纯钛在相应的变形工况下发生了溶质原子与位错相互作用的动态应变时效过程。

图1准静态和动态下不同温度的拉伸应力应变曲线

b)力学性能的温度相关性和应变速率相关性规律

在10-3s-1应变速率下,变形温度为623K

应变硬化率在准静态条件约423~623K间和动态条件约523~773K下受温度影响较小,其他条件下与温度呈明显的负相关性。

应变速率相关性:

如图2(b)所示,同一应变速率下的伸长率—温度曲线在动态条件下呈“U”形趋势,而在准静态条件下呈“W”形的趋势;其中在温度为773K时,试样的断裂应变出现极小值点(俗称“蓝脆”点)。

在不同温度下准静态的应力应变曲线均看不到明显的屈服点(见

图1(a),(b));而在动态加载下,当Ts>693K时出现了明显的屈服点;在1400s-1应变率下,流动应力在屈服点后还发生了振荡(见图1(d))。

图2温度和应变速率对TA1流动应力⑻和伸长率(b)的影响

c)不同温度和应变速率下的显微组织

金相观察结果如图3所示,所观察的试件中晶粒均在拉伸方向伸长。

孪晶的出现能使晶粒细化,因此动态试件中的平均晶粒尺寸明显小于相应温度下的准静态试件。

另外,变形温度在773K以上的各试

件中,晶粒整体形貌与未变形时相比变化很小,在TEM下也发现其

位错密度等变形特征大大减少。

由于773K已达到纯钛的再结晶温度(纯钛熔点为1941K),因此结合以上观察结果可以断定高温加载条件下的断裂应变增加、应变硬化率降低等现象均是由于试验中试件发生动态再结晶,使内部缺陷在变形的同时得到修复的缘故。

图3几种典型加载工况下变形后试样的金相组织,箭头为拉伸方向

1.1.4TA2板材90°ECAP变形工艺的组织与性能[1][]刘晓燕,赵西成,杨西荣等.退火温度对90°ECAP变形工业纯钛组织和性能的影响[J].金属热处理,2013,38

(1):

92-96

研究方法:

将TA2板材加工成18mmxi8mmX70mm的ECAP试样,放入两通道夹角90°,外圆角20°的等径弯曲通道变形模具中在室温下进行1道次ECAP变形,挤压速度为3.5mm/s。

本试验单道次等效应变为1.05。

a)等径弯曲通道变形后的显微组织

室温90°模具ECAP变形工业纯钛1道次后的显微组织如图1所示。

图1(a)中可以看出变形后,横断面晶粒基本保持等轴状,且晶粒内部发生了剧烈塑性变形。

图1(b)显示,ECAP变形后,纵断面的晶

粒被明显拉长,具有明显的方向性,其与X轴(挤出方向)的夹角约为

27°,这与ECAP变形1道次的剪切特征吻合。

图1ECAP变形后工业纯钛的显微组织(a)横截面;(b)纵截面

b)退火温度对显微组织的影响

从图2(a)(b)可以看出,工业纯钛在400C经过1h退火后,退火后组织与工业纯钛1道次ECAP冷变形后组织类似,仍然保持明显的方向性,但是晶界较清晰,说明经过400C退火1h后,变形组织已经发生回复,应力释放。

在500C退火1h时(见图2(c),(d)),发生大范围内的再结晶,而且再结晶核心逐渐长大横断面基本看不到原始晶界,但是纵断面仍然可以观察到宏观拉长的变形组织,即500C退

火1h未改变原始变形组织的方向性,没有完全再结晶。

在600C退火1h(见图(e),⑴),变形组织已经完全再结晶并晶粒长大,得到平均晶粒尺寸约为12gm的等轴状的再结晶组织。

通过上述观察分析,工业纯钛在高于400C退火时,由于开始发生再结晶现象,随温度升高,晶粒逐渐开始长大,强度硬度开始降低,热稳定性能变差

图2工业纯钛ECAP变形试样不同温度退火1h横(a,c,e)、纵(b,

d,f)截面的光学显微组织

(a,b)400C;c,d)500C(e,f)600C

c)退火温度对力学性能的影响

工业纯钛室温1道次ECAP变形试样在不同温度退火1h的抗拉强度、伸长率和显微硬度随退火温度变化如图3所示。

随着退火温度升高,抗拉强度和显微硬度逐渐降低,伸长率逐渐提高。

当退火温度为

400C时,抗拉强度和显微硬度下降缓慢,当退火温度高于400C时,抗拉强度和显微硬度迅速下降,伸长率显著提高,这也与图2中不同温度退火后的显微组织相对应,即室温工业纯钛1道次ECAP变形试样在400C、500C禾600C退火1h后分别发生回复、变形试样大范围内再结晶和完全再结晶并且晶粒长大。

在600C退火1h后硬度为

1204MPa,低于初始热轧态工业纯钛硬度(1380MPa),这是因为初始组织中有大量孪晶的存在。

图3退火温度对ECAP试样抗拉强度显微硬度和伸长率的影响

d)不同退火温度后拉伸断口形貌

工业纯钛所有的中心拉伸断口区域存在大量的等轴韧窝,表现出典型的韧性断裂特征。

韧窝随退火温度的降低而变得细小均匀,在韧窝的底部存在一些小孔洞,这是断裂的起始位置。

这些空洞可能是杂质所产生的。

由ECAP变形1道次丫面的显微组织(图1(b))可知,晶粒被拉长,且与挤出方向呈27°。

尽管1道次变形后,晶粒沿长度方向不能细化到一个较小的水平,但是平均宽度较小,这使ECAP变形试样断口的韧窝尺寸也较细小。

与ECAP变形试样的拉伸断口比较,如图4,可知经过400C、500C和00C退火后,拉伸断口的韧窝内部较粗糙较深,而且断面起伏较大,这说明在空洞连接过程中消耗了相当大的变形能量,材料的韧性较好。

图4工业纯钛ECAP(a)变形试样及(b)400°C,(c)500C,(d)600C退火试样在室温下的断口SEM形貌

1.2TA5钛合金

TA5-A板材的组织与性能[1]

[1]廖强,谢文龙,曲恒磊,等.热轧温度对TA5-A钛合金板材组织及拉伸性能的影响[J].材料热处理技术.2012,41(16):

50-52

研究方法:

TA5-A钛合金(相变点约为990-1000C)锻态板坯,厚度为160-180mm,经一火次轧制,轧制总变形率约为60%,一火共轧制8个道次,各轧制道次压下率分别为:

5-7%、11-12%、11-12%、13-15%、14-15%、11-13%、11-13%、4-7%。

a)锻态板坯的显微组织

等轴a晶粒,晶粒较粗大,尺寸分布不均匀,约为20-150卩m,见图1所示。

图1TA5-A钛合金锻态板坯的横纵向微观组织的金相照片

b)900C热轧后的组织与性能

板材横向晶粒尺寸较细小,尺寸范围为3-40卩m,见图2(a);板

材纵向组织为纤维状晶粒,组织出现明显的择优取向,见图2(b)

图2900C热轧后的TA5-A钛合金板材的横纵向微观组织的金相照片

c)930C和950C热轧后的组织与性能

板材横向晶粒尺寸范围都为10-40卩m,见图3(a)、(c);板材纵向组织都为纤维状晶粒,组织出现明显的择优取向,见图3(b)、(d)。

图3930C和950C热轧后的TA5-A钛合金板材的横纵向微观组织的金相照片

d)970C热轧后的组织与性能

板材横向晶粒较粗大,尺寸范围都为50-150卩m,见图4(a);板

材纵向组织为近纤维状晶粒,组织出现择优取向不明显,见图4(b)。

图4970C热轧后的TA5-A钛合金板材的横纵向微观组织的金相照片

e)不同温度热轧后TA5-A钛合金板材的力学性能随热轧温度的升高,合金强度逐步降低,塑性增加。

当热轧温度

为900C时,TA5-A板材的强度达到相对最大,Rm约770MPa,Rpg约670MPa,断后伸长率(A%)相对最小,约13%。

当热轧温度为930C和950C时,TA5-A板材的抗拉强度和塑性达到良好匹配,见图5。

1.3TA7钛合金

TA7合金的名义成分为Ti-5AI-2.5Sn,相变点1040~1090C,

TA7ELI相变点~1010C。

在退火状态下具有中等强度、良好的断裂韧性和足够的塑性,焊接性能良好。

长期工作温度可达500C,短期工

作温度可达800C。

该合金在成形时变形抗力大,在a相区成形时塑性差,不能用于冷成型,不能通过热处理提高强度,通常在退火状态交货使用[]。

低间隙元素含量的TA7ELI合金,在超低温(-253C)条件下仍然具有良好的韧性和综合性能,是优良的超低温用钛合金。

表1

是TA7的室温力学性能,图1-图3是TA7常见的微观组织。

[]孙红兰,姚泽坤等.TA7钛合金不同墩粗条件下的缺陷形成的研究[J].热加工工艺,2011,3:

81-83

表1TA7合金室温力学性能

状态

Rm/MPa

Rp0.2/MPa

A/%

Z/%

800°C/1h,AC

825

755

15.0

37.5

图1TA7合金两相区加工后的退火组织,白色拉长的组织为初生a相

图3TA7合金B相区(1170C/30min空冷)固溶处理,晶间3+全片层B转变组织

TA7钛合金棒材的工艺与性能[]

[]姚泽坤,孙红兰等.工艺参数组合对TA7钛合金拉伸性能的影响[J].重型机械,2012,3:

74-77

研究方法:

在6300KN四柱液压机上对©20mm的TA7棒材进行近等温锻造,由金相法测得的该材料相变点为1035C。

在980~1040C、0.001~0.05s-1和30%~50%范围内,为获得较优匹配的拉伸性能,通过拟水平正交试验和方差分析的方法得到的工艺参数组合为:

坯料加热温度1040C,应变速率0.05s-1,变形量50%。

其正交实验方法和结果如表2和表3。

表2拟水平正交表

表3正交试验结果

1.4TA11钛合金[]

[]赵永庆,朱康英,李佐臣等.TA11合金的热稳定性能[J].稀有金属材

料与工程,1997,26(3):

35-39

[]党淼,齐广霞,史丽坤.TA11钛合金高温变形微观组织演变分析[J].材料热处理技术,2010,39(4):

44-46

Ti811合金是美国20世纪50年代研制的一种近a钛合金,中国牌号为TA11,可在450C条件下长期使用,其名义成分为Ti8AI1Mo1V,相变点~1040C。

该合金不仅在高温下具有良好的热稳定性,高的蠕变性能和优良的阻尼性能,而且有较高的高温抗拉强度,因此该合金通长用作于航空发动机压气机叶片材料。

该合金有较高的a稳定元素Al,而B稳定元素Mo、V的含量较少,由于保持了a型合金的特点,所以有良好的高温蠕变性能和焊接性,又具有某些a+型合金的特性。

TA11合金的力学性能如表1,常见的微观组织如图1-图6:

表1TA11合金力学性能

试验温度

Rm/MPa

Rp0.2/MPa

A/%

Z/%

板材

室温

895

825

10

棒材

室温

1020

896

13

19

棒材

540C

655

503

14

30

图3TA11合金棒1010C/1h空冷+580C/8h空冷处理:

等轴a+少量B转变组织

图4TA11合金棒经两相区精锻加工态:

拉长的条状a组织

图5TA11合金两相区加工+1000C退火形成的双态组织:

在转变的B基体(暗)上含有细针状a及等轴初生a晶粒(亮)

图6TA11合金经两相区加工并退火后形成的等轴组织:

等轴a(亮)+少量晶间B(暗)

1.5Ti600高温钛合金[]

[]洪权,戚运莲,赵永庆.加工工艺对Ti600合金板材组织性能的影响[J].稀有金属材料与工程,2005,34(8):

1334-1337

Ti-600合金(Ti-AI-Mo-Sn-Zr-Si-Y系,相变点~1010C)是西北有色金属研究院研制的一种新型近a高温钛合金,该合金是在美国Ti1100合金基础上,通过添加少量稀有元素改进而成,具有较好的综合性能,尤其是蠕变性能非常优异,可在600~650C下长期使用。

Ti600高温钛合金板材组织性能

研究方法:

经真空自耗电弧炉两次重熔,制成©150mm的25kg铸锭。

经测试,Ti600合金相变点温度为1015C。

锭坯经1150C锤锻成28mm厚板坯。

轧制:

A:

板坯-加热至995C,保温30min-常规轧制;

B:

板坯—B区淬火,1060°C/30min,水淬(WQ)—加

热至995C,保温30min—常规轧制。

即B比A多了一道B区淬火。

热处理:

H1:

板材—1060C/2h,空冷—650C/8h,空冷;

H2:

板材—1008C/2h,空冷—650C/8h,空冷;

H3:

板材—990C/2h,空冷—650C/8h,空冷;

a)Ti600高温钛合金板材室温拉伸性能

由表1可以看出,采用A和B两套不同工艺加工的板材,经过H1,H2,H3三种不同的热处理,其室温拉伸性能不论其数值还是随热处理温度的变化趋势都基本一致。

即加工工艺及热处理工艺对其室温拉伸性能影响不大。

表1Ti600高温钛合金板材(11mm)不同工艺下的室温力学性能

工艺

Rm/MPa

Rp0.2/MPa

A/%

Z/%

A+H1

1065

968

9.2

16

A+H2

1075

987

12

18

A+H3

1007

963

15

19

B+H1

1059

972

9.5

16

B+H2

1081

990

13

19

B+H3

1010

971

14

20

b)Ti600高温钛合金板材的显微组织

由图1可见,随着固溶温度的提高(H3fHa比例越来

越少,组织形貌由等轴组织向双态组织、网篮组织转变。

另外,由图1e及图1f可以看出:

经B单相区处理后,A、B两种工艺加工的板材均呈网篮状片层组织,但B工艺片层组织的团束的体积明显较大(约350卩m);而A工艺片层组织团束的尺寸较小(约150卩m,)见图1e。

一般而言,合金的高温强度主要取决于晶内强度,晶粒尺寸愈大,

晶界愈少,高温强度则愈高。

图7不同加工及热处理状态下Ti600合金板材的显微组织

(a)A/H3,(b)B/H3,(c)A/H2,(d)B/H2,(e)A/H1,and(f)B/H1

1.6CT20低温钛合金

CT20合金是西北有色金属研究院研发的一种Ti-AI-Mo-Zr系近

a型中强钛合金,适用于超低温环境下使用。

该合金可制备成棒材、板材、管材、焊丝,简单退火状态下室温强度大于600MPa,伸长率大

于20%;20K温度下强度大于1100MPa,伸长率大于10%,具有优异的焊接性能,焊接系数大于0.9。

同时具有优异的加工及冷热成型性能,可采用常规锻造、挤压、热轧及冷加工处理,退火态(800C/1h)管材可进行冷弯处理。

相变点~915C,弹性模量95885MPa。

常见的

的微观组织如图1-图3所示:

图1CT20钛合金B相区加工组织:

网篮组织

图2CT20钛合金两相区固溶处理组织:

等轴初生a+片层B转变组织

图3CT20钛合金退火态组织:

等轴a(亮)+少量B(暗)

1.7TA13钛合金[]

[]马鸿海,冯军宁.热处理工艺对Ti-230合金薄板组织和性能的影响[J].稀有金属快报,2007,26(11):

27-30

Ti230合金是英国研制的一种近a钛合金,名义成分为Ti2.5Cu,中国牌号为TA13。

合金相变点~895C。

具有较好的冷、热加工工艺性能,在退火和固溶状态下具有良好的成型性,同时还具有良好的焊接性和高温力学性能,主要用于制做飞机发动机部件。

可加工成棒材、丝材、板材、锻件及环形件。

该合金是一种具有显著时效强化效应的近a型钛合金,经过时效处理后其室温和高温强度提高25%~50%。

该合金在加工和热处理过程中会发生共析反应,若热处理工艺控制不当,析出Ti2Cu粒子会影响材料的力学性能。

热处理工艺对TA13薄板的组织性能的影响

研究方法:

实验用材料为0.7mm厚的Ti-230钛合金冷轧薄板。

板材分别经650,700,750,790C不同温度退火,保温时间均为30min,冷却方式为空冷。

然后在790C下退火,保温时间分别为5,

15,30min,冷却方式为空冷。

a)Ti-230钛合金薄板的力学性能

板材经650,700,750,790C退火后的室温力学性能见图1。

该合金的室温抗拉强度在544~571MP之间,屈服强度在454~484MPa之间,随着退火温度的升高,板材的强度呈递增的趋势,790C退火时,板材的强度最高。

而板材的延伸率从28%降至

26%,下降幅度不是很大。

图1不同退火温度Ti-230钛合金的室温力

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2