实验4 信道均衡器Word格式文档下载.docx

上传人:b****1 文档编号:1044195 上传时间:2023-04-30 格式:DOCX 页数:12 大小:576.66KB
下载 相关 举报
实验4 信道均衡器Word格式文档下载.docx_第1页
第1页 / 共12页
实验4 信道均衡器Word格式文档下载.docx_第2页
第2页 / 共12页
实验4 信道均衡器Word格式文档下载.docx_第3页
第3页 / 共12页
实验4 信道均衡器Word格式文档下载.docx_第4页
第4页 / 共12页
实验4 信道均衡器Word格式文档下载.docx_第5页
第5页 / 共12页
实验4 信道均衡器Word格式文档下载.docx_第6页
第6页 / 共12页
实验4 信道均衡器Word格式文档下载.docx_第7页
第7页 / 共12页
实验4 信道均衡器Word格式文档下载.docx_第8页
第8页 / 共12页
实验4 信道均衡器Word格式文档下载.docx_第9页
第9页 / 共12页
实验4 信道均衡器Word格式文档下载.docx_第10页
第10页 / 共12页
实验4 信道均衡器Word格式文档下载.docx_第11页
第11页 / 共12页
实验4 信道均衡器Word格式文档下载.docx_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

实验4 信道均衡器Word格式文档下载.docx

《实验4 信道均衡器Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《实验4 信道均衡器Word格式文档下载.docx(12页珍藏版)》请在冰点文库上搜索。

实验4 信道均衡器Word格式文档下载.docx

同析楼三栋111

一.实验目的

1.1认识Matlab/Simulink的基本功能。

1.2了解Simulink的基本图符库,并能做出信道均衡器仿真。

1.3掌握数字基带传输系统的具体结构,均衡器的作用。

二.实验内容

2.1在本仿真模型中添加示波器,观察发送端的发送信号在升余弦滚降滤波前后的变化。

2.2在本仿真模型中将信道设置为无失真信道,即信道系数为

,均衡器系数设置为

,运行模型,比较接收码元序列与发送码元系列,检验奈奎斯特抽样值无失真条件是否得到满足。

三.实验设备及材料

3.1WindowsXP/Windows7

3.2MatlabR2011b

四.实验原理

4.1升余弦滚降信号

升余弦滚降信号满足奈奎斯特抽样值无失真准则,而且物理可实现好。

升余弦滚降信号的频谱的表达式为

这里

是滚降系数,

;

S0为归一化常数。

升余弦滚降信号具有如下的时域表达形式:

(1)

由上述时域表达式可知,升余弦滚降信号在除0之外的整数倍T时刻的采样值为0,因而满足乃奎斯特抽样值无失真传输条件,即采用升余弦滚降信号作为码元波形,按码元周期T进行抽样时,不会形成码间串扰。

码元波形成形的方法是用升余弦滚降滤波器对码元冲激序列进行滤波,升余弦滚降滤波器的冲激响应即Y(t)。

这样每个码元转换为一个相似于Y(t)的波形,波形的幅度和正负极性取决于脉冲的幅度和正负极性。

在实际通信系统中,接收滤波器HR(f)通常是发送滤波器HT(f)的匹配滤波器,即

=

为了保证接收端的抽样值无失真,需要使发送滤波器和接收滤波器级联的效果等效于升余弦滚降滤波器,即

(2)

符合上述条件的

称为平方根升余弦滚降滤波器,通常情况下

采用有限冲激响应(FIR)滤波器的形式实现,这种情况下

,发送滤波器和接收滤波器为相同的平方根升余弦滚降滤波器。

本实验在离散时间域进行,采样周期

平方根余弦滚降滤波器采用FIR滤波器的形式实现。

FIR滤波器要求滤波器的冲激响应是有限长度的,冲激响应的离散时间长度即滤波器的阶数。

在本实验中采用了滚降系数为1的32阶平方根升余弦滚降滤波器,即滤波器的冲激响应的时间长度为32T,相当于8个码元周期。

滤波器的系数通过Simulink模块计算得到。

4.2串扰信道

该信道的冲激响应是

在整个仿真时间段内,假设该信道不随时间而变化。

4.3均衡器设计

多径传输和信道失真可能引起严重的码间串扰,采用适当有效的均衡技术,可以提高数据传输速率、误码率性能和频带利用率。

本实验仿真的是横向滤波器形式的时域信道均衡器,如图1所示,它由带有抽头的延迟线、加权系数相乘器及相加器组成。

图1横向滤波器(信道均衡器)

本实验设计和仿真一个3阶的均衡器,均衡器的系数用矢量C=[C-1C0C1]T表示。

依据迫零准则,根据信道的冲激响应计算均衡器的系数。

迫零准则要求,当均衡器输入序列

(信道冲激响应序列),其输出

=[010],即

(3)

式中

(4)

容易计算得到

(5)

综上所述,本实验进行如图2所示的仿真。

在发送端,将输入码元序列输入到升余弦滚降滤波器,得到数字基带信号,经过串扰信道,在接收端通过均衡器,去除串扰,得到输出码元序列。

升余弦滚降滤波器是按照采样周期T/4(T为码元周期)设计的,所以输入码元序列在进行升余弦滚降滤波前还要先进行4倍上采样,将采样周期提高到T/4,同样在均衡器之后,输出码元序列之前,还要进行4倍下采样,将采样周期恢复为T。

图2数字基带传输系统简化框图

4.4实验方案设计

本实验对应的仿真文件是equalizer.mdl,打开equalizer.mdl可以得到如图3所示的仿真模型架构。

该模型主要分为三个主要部分,分别是发送端、信道和接收端。

图3仿真系统框图

(1)基带数字传输发送端

发送端由图4中的3个模块构成,其中数据发生器模块的细节如图5所示。

发送端由一个伯努利二进制序列发生器产生随机的{0,1}二进制序列,然后将该序列转换为二电平码元序列;

码元序列的采样周期是1ms,经过4倍增采样,采样周期成为0.25ms(采样频率为4kHz);

然后送到平方根升余弦滚降滤波器,得到发送的基带数字信号,该信号中每个码元的波形都是平方根升余弦滚降信号;

上采样前的4倍增益保证在上采样和滤波后信号的幅度保持在1附近。

图4基带数字传输发送端图5数据发生器SourceData内部模型图

(2)串扰信道

串扰信道的结构如图6所示,是典型的FIR滤波器结构,其冲激响应在1ms采样周期下是

图6串扰信道模型

(3)基带数字传输接收端

基带数字传输接收端的结构如图7所示。

接收到的数字基带信号首先通过匹配滤波器,

匹配滤波器和发送端的平方根升余弦滚降滤波器完全相同,匹配滤波器和发送端滤波器共同构成一个升余弦滚降滤波器,使基带码元传输满足奈奎斯特抽样值无失真条件。

匹配滤波器的输出送入均衡器,均衡器的细节结构如图8所示,其结构是典型的FIR滤波器结构,其冲激响应在1ms采样周期下是

均衡之后的数字基带信号要经过下采样,恢复采样周期为T,获取发送的码元。

下采样中的一个关键参数是采样偏移(sampleoffset),采样偏移是由之前所有处理模块的时间延迟所决定的,在实际通信系统中需要通过尝试有限的几种可能性,可以确定当采样偏移是0时可以抽样到最佳的码元电平值。

图7基带数字传输接收端

图8信道均衡器模型结构

五.实验步骤

5.1打开matlab应用软件,如图9所示。

5.2在图(4)中右边的命令窗(CommandWindow)的光标处输入:

simulink,回车。

图9Matlab界面

5.3在图9中,选择:

File>

New>

Model新建文件,保存在matlab工作目录下,并取名

为equalizer.mdl。

5.4在Find命令行处输入:

BernouliBinaryGenerator,就在窗口的右边找到了该仿真模块图标。

用鼠标右键选择该模块,将其添加到创建的equalizer窗口中。

5.5用相同的方法创建“眼图”(EyeDiagramScope),观察每个设备的连接点,用鼠标左键把设备连接起来,如图3所示。

5.6进行相关参数设置:

双击滤波器模块,即可打开参数设置对话框,如图10所示。

该模块以FIR方式实现了滚降系数为1的32阶平方根升余弦滚降滤波器。

要注意的是滤波器的频率指标的设计,参数Fs代表通过该滤波器的离散序列的采样频率,即本仿真的系统采样频率4kHz;

而参数Fc为滤波器的截止频率,对于升余弦滚降滤波器和平方根升余弦滚降滤波器,截止频率即奈奎斯特带宽1/2T,所以Fc=500Hz。

如图10设置好参数后用鼠标点击”DesignFiler”就完成了滤波器设计,滤波器的频率响应显示在图10的上部。

如果想看滤波器的系数,可用鼠标点击图10中的滤波器系数按钮查看。

图10数字滤波器设计模块参数设置对话框

5.7用鼠标点击“运行仿真模型按钮”即可运行equalizer.mdl,观察实验结果。

6.实验现象与结果

运行equalizer.mdl可以得到如下的仿真结果。

6.1均衡前后的眼图比较(如图11、图12)

从均衡前后的眼图比较可以看到,接收信号的眼图是杂乱的,这是因为信道的线性失真造成了码元之间的相互干扰,即码间串扰。

通过均衡降低码间串扰,可以看到“眼睛”明显睁开了。

码间串扰的降低使基带数字通信系统的噪声容限增加,减小了过零点失真、峰值失真和对定时误差的灵敏度。

图11接收信号(均衡之前)的眼图

图12经均衡之后信号的眼图

6.2时域信号比较(如图13)

从均衡前后信号波形的比较可以看出均衡后的信号码元峰值失真更小,波形更加完整(高低电平的持续时间更长),更利于抽样判决。

图13均衡前(上)和均衡后(下)信号波形比较

从发送码元序列与接收码元序列比较可以看出,下采样后的码元电平和发送码元电平相比很接近(图14)。

因为本实验的均衡器不能完全消除的码间串扰,下采样后的码元电平上还叠加了小幅度的误差波形。

图14接收码元序列(上)与发送码元序列(下)比较

七.实验数据处理方法

图像法

八.参考文献

(1)现代通信原理实验及仿真教程何文学,金争,景艳梅,毛慰民编著

(2)现代通信技术讲义PPT

(3)通信原理(第六版)樊昌信,曹丽娜编著

九.思考题

9.1阐述你所掌握的数字基带传输系统的结构以及均衡器的作用。

答:

数字基带传输系统包括发送端、串扰信道和接收端。

均衡器的作用主要是可以提高数据传输速率、误码率性能和频带利用率。

十.实验总结

 模拟信号经过信源编码得到的信号为数字基带信号,在某些有线信道中,特别是传输距离不大远的情况下,将这种信号经过码型变换,不经过调制,直接送到信道传输,称为数字信号的基带传输。

1)基带传输系统的组成

它主要由码波形变换器、发送滤波器、信道、接收滤波器和取样判决器等5个功能电路组成。

2)数字基带信号传输码型的要求

  

(1)有利于提高系统的频带利用率。

(2)基带信号应不含直流分量,同时低频分量要尽量少,因为由于变压器的接入,使信道具有低频截止特性。

(3)考虑到码型频谱中高频分量的影响,电缆中线对间由于电磁辐射而引起的串话随频率升高而加剧,会限制信号的传输距离或传输容量。

 (4)基带信号应具有足够大的定时信号供提取。

 (5)基带信号的传输码型应具有误码检测能力。

  (6)码型变换设备简单,容易实现。

3)常用的基带传输码型

  常见的传输码型有NRZ码、RZ码、AMI码、HDB3码及CMI码,其中最适合基带传输的码型是HDB3码。

另外,AMI码也是CCITT建议采用的基带传输码型,但其缺点是当长连"

0"

过多时对定时信号提取不利。

CMI码一般作为四次群的接口码型。

4)数字信号传输的基本准则

  

(1)奈奎斯特第一准则

(2)滚降低通幅频特性(3)眼图

5)再生中继传输

基带数字信号在传输过程中,由于信道本身的特性及噪声干扰使得数字信号波形产生失真。

为了消除这种波形失真,每隔一定的距离加一再生中继器,由此构成再生中继系统。

再生中继系统的特点是无噪声积累,但有误码率的累积。

再生中继器由均衡放大、时钟提取和判决再生三大部分组成。

教师评语及评分:

签名:

年月日

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 工程科技 > 能源化工

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2