材料科学概论.docx

上传人:b****3 文档编号:10485416 上传时间:2023-05-26 格式:DOCX 页数:75 大小:98.31KB
下载 相关 举报
材料科学概论.docx_第1页
第1页 / 共75页
材料科学概论.docx_第2页
第2页 / 共75页
材料科学概论.docx_第3页
第3页 / 共75页
材料科学概论.docx_第4页
第4页 / 共75页
材料科学概论.docx_第5页
第5页 / 共75页
材料科学概论.docx_第6页
第6页 / 共75页
材料科学概论.docx_第7页
第7页 / 共75页
材料科学概论.docx_第8页
第8页 / 共75页
材料科学概论.docx_第9页
第9页 / 共75页
材料科学概论.docx_第10页
第10页 / 共75页
材料科学概论.docx_第11页
第11页 / 共75页
材料科学概论.docx_第12页
第12页 / 共75页
材料科学概论.docx_第13页
第13页 / 共75页
材料科学概论.docx_第14页
第14页 / 共75页
材料科学概论.docx_第15页
第15页 / 共75页
材料科学概论.docx_第16页
第16页 / 共75页
材料科学概论.docx_第17页
第17页 / 共75页
材料科学概论.docx_第18页
第18页 / 共75页
材料科学概论.docx_第19页
第19页 / 共75页
材料科学概论.docx_第20页
第20页 / 共75页
亲,该文档总共75页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

材料科学概论.docx

《材料科学概论.docx》由会员分享,可在线阅读,更多相关《材料科学概论.docx(75页珍藏版)》请在冰点文库上搜索。

材料科学概论.docx

材料科学概论

无机纳米材料

  无机纳米材料是纳米材料从物质的类别来划分出的一种纳米材料。

指其组成的主体是无机物质。

纳米材料简述

  纳米材料指的是纳米结构按一定方式堆积或一定基体中分散形成的宏观材料。

  纳米结构为至少一维尺寸在1~100nm区域的结构,它包括纳米粒子、纳米纤维、纳米薄膜、纳米块状和纳米晶等。

[1]

纳米粒子

  又称超微粒子(ultrafinepowders,简称UFP),统指1~100nm的细微颗粒(结晶的或非结晶的)。

纳米粒子既不同于微观原子、分子团簇,又不同于宏观体相材料,是一种介于宏观固体和分子间的亚稳中间态物质。

当粒子尺寸进入纳米数量级(1~100nm)时,由于纳米粒子的表面原子与体相总原子数之比随粒径尺寸的减少而急剧增大,使其显示出强烈的体积效应、量子效应、表面效应和宏观量子隧道效应。

纳米材料分类

  包括纳米块状材料和纳米复合材料。

从物质的类别来分,可分为金属纳米材料、无机氧化物纳米材料、无机半导体纳米材料和有机小分子和聚合物纳米材料。

纳米材料制备一般方法

  制备纳米材料的方法有:

化学气相沉积法、物理气相沉积法、机械合金法、液相化学合成法、超声波辐射法。

无机纳米材料分类

纳米氧化物、纳米复合氧化物、纳米金属及合金,以及其他无机纳米材料。

 

纳米材料

百科名片

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。

简介

  从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。

因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。

  纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。

  纳米级结构材料简称为纳米材料(nanomaterial),是指其结构单元的尺寸介于1纳米~100纳米范围之间。

由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。

并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

  纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nanoparticle)组成。

纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。

当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。

  纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。

其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。

纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。

  纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。

  纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。

这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。

  就熔点来说,纳米粉末中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。

  一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。

因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。

  纳米粒子的粒径(10纳米~100纳米)小于光波的长,因此将与入射光产生复杂的交互作用。

金属在适当的蒸发沉积条件下,可得到易吸收光的黑色金属超微粒子,称为金属黑,这与金属在真空镀膜形成高反射率光泽面成强烈对比。

纳米材料因其光吸收率大的特色,可应用于红外线感测器材料。

  纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。

我国已努力赶上先进国家水平,研究队伍也在日渐壮大。

 

纳米结构

  纳米结构是以纳米尺度的物质单元为基础按一定规律构筑或营造的一种新体系。

它包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。

目前对纳米阵列体系的研究集中在由金属纳米微粒或半导体纳米微粒在一个绝缘的衬底上整齐排列所形成的二位体系上。

而纳米微粒与介孔固体组装体系由于微粒本身的特性,以及与界面的基体耦合所产生的一些新的效应,也使其成为了研究热点,按照其中支撑体的种类可将它划分为无机介孔复合体和高分子介孔复合体两大类,按支撑体的状态又可将它划分为有序介孔复合体和无序介孔复合体。

在薄膜嵌镶体系中,对纳米颗粒膜的主要研究是基于体系的电学特性和磁学特性而展开的。

美国科学家利用自组装技术将几百只单壁纳米碳管组成晶体索“Ropes”,这种索具有金属特性,室温下电阻率小于0.0001Ω/m;将纳米三碘化铅组装到尼龙-11上,在X射线照射下具有光电导性能,利用这种性能为发展数字射线照相奠定了基础。

技术指标

  纳米氧化铝外观白色粉末。

  纳米氧化铝晶相γ相。

  纳米氧化铝平均粒度(nm)20±5.

  纳米氧化铝含量%大于99.9%。

  熔点:

2010℃-2050℃

  沸点:

2980℃

  相对密度(水=1)】:

3.97-4.0

应用范围

  用于制镶牙水泥、瓷器、油漆的填料、媒染剂、金属铝等。

可添加到各种水性树脂、油性树脂内、环氧树脂、丙稀酸树脂、聚铵酯树脂、朔料、橡胶中,添加量为3%-5%,可以明显提高材质的硬度,硬度可达6-8H甚至更高。

还可以用在导热、抛光、电镀、催化剂等。

  纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。

  纳米级结构材料简称为纳米材料(nanomaterial),是指其结构单元的尺寸介于1纳米~100纳米范围之间。

由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。

并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。

  纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nanoparticle)组成。

纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有量子尺寸效应、表面效应、小尺寸效应和宏观量子隧道效应。

当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。

(1)表面与界面效应这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。

例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。

主要原因就在于直径减少,表面原子数量增多。

再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。

如此高的比表面积会出现一些极为奇特的现象,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。

(2)小尺寸效应当纳米微粒尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,从而使其声、光、电、磁,热力学等性能呈现出“新奇”的现象。

例如,铜颗粒达到纳米尺寸时就变得不能导电;绝缘的二氧化硅颗粒在20纳米时却开始导电。

再譬如,高分子材料加纳米材料制成的刀具比金钢石制品还要坚硬。

利用这些特性,可以高效率地将太阳能转变为热能、电能,此外又有可能应用于红外敏感元件、红外隐身技术等等。

(3)量子尺寸效应当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级。

当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料的量子效应,从而使其磁、光、声、热、电、超导电性能变化。

例如,有种金属纳米粒子吸收光线能力非常强,在1.1365千克水里只要放入千分之一这种粒子,水就会变得完全不透明。

(4)宏观量子隧道效应微观粒子具有贯穿势垒的能力称为隧道效应。

纳米粒子的磁化强度等也有隧道效应,它们可以穿过宏观系统的势垒而产生变化,这种被称为纳米粒子的宏观量子隧道效应

  纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。

其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。

纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。

  纳米粒子指线度处于1~100nm之间的聚合体,它是处于该几何尺寸的各种粒子的总称。

纳米粒子的形态并不限于球形,还有板状、棒状、角状、海绵状等。

当粒子尺寸进入纳米级时,具有量子尺寸效应,小尺寸效应、表面效应和宏观量子隧道效应,因而展现出许多特有的性质,在催化、滤光、光吸收、医药、磁介质及新材料等方面有广阔的应用前景。

  纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。

这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。

  就熔点来说,纳米粉末中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。

  一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。

因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。

  纳米粒子的粒径(10纳米~100纳米)小于光波的长,因此将与入射光产生复杂的交互作用。

金属在适当的蒸发沉积条件下,可得到易吸收光的黑色金属超微粒子,称为金属黑,这与金属在真空镀膜形成高反射率光泽面成强烈对比。

纳米材料因其光吸收率大的特色,可应用于红外线感测器材料。

  纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。

我国已努力赶上先进国家水平,研究队伍也在日渐壮大。

纳米材料分类

  纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。

其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

纳米粉末

  又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。

可用于:

高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。

纳米纤维

  指直径为纳米尺度而长度较大的线状材料。

可用于:

微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。

纳米膜

  纳米膜分为颗粒膜与致密膜。

颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。

致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。

可用于:

气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。

  纳米块体:

是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。

主要用途为:

超高强度材料;智能金属材料等。

纳米材料的用途

  很广,主要用途有:

  医药使用纳米技术能使药品生产过程越来越精细,并在纳米材料的尺度上直接利用原子、分子的排布制造具有特定功能的药品。

纳米材料粒子将使药物在人体内的传输更为方便,用数层纳米粒子包裹的智能药物进入人体后可主动搜索并攻击癌细胞或修补损伤组织。

使用纳米技术的新型诊断仪器只需检测少量血液,就能通过其中的蛋白质和DNA诊断出各种疾病。

  家电用纳米材料制成的纳米材料多功能塑料,具有抗菌、除味、防腐、抗老化、抗紫外线等作用,可用处作电冰霜、空调外壳里的抗菌除味塑料。

  电子计算机和电子工业可以从阅读硬盘上读卡机以及存储容量为目前芯片上千倍的纳米材料级存储器芯片都已投入生产。

计算机在普遍采用纳米材料后,可以缩小成为“掌上电脑”。

  环境保护环境科学领域将出现功能独特的纳米膜。

这种膜能够探测到由化学和生物制剂造成的污染,并能够对这些制剂进行过滤,从而消除污染。

  纺织工业在合成纤维树脂中添加纳米SiO2、纳米ZnO、纳米SiO2复配粉体材料,经抽丝、织布,可制成杀菌、防霉、除臭和抗紫外线辐射的内衣和服装,可用于制造抗菌内衣、用品,可制得满足国防工业要求的抗紫外线辐射的功能纤维。

  机械工业采用纳米材料技术对机械关键零部件进行金属表面纳米粉涂层处理,可以提高机械设备的耐磨性、硬度和使用寿命。

国内的研究情况及取得的成果

  纳米技术作为一种最具有市场应用潜力的新兴科学技术,其潜在的重要性毋庸置疑,一些发达国家都投入大量的资金进行研究工作。

如美国最早成立了纳米研究中心,日本文教科部把纳米技术,列为材料科学的四大重点研究开发项目之一。

在德国,以汉堡大学和美因茨大学为纳米技术研究中心,政府每年出资6500万美元支持微系统的研究。

在国内,许多科研院所、高等院校也组织科研力量,开展纳米技术的研究工作,并取得了一定的研究成果,主要如下:

  定向纳米碳管阵列的合成,由中国科学院物理研究所解思深研究员等完成。

他们利用化学气相法高效制备出孔径约20纳米,长度约100微米的碳纳米管。

并由此制备出纳米管阵列,其面积达3毫米×3毫米,碳纳米管之间间距为100微米。

  氮化镓纳米棒的制备,由清华大学范守善教授等完成。

他们首次利用碳纳米管制备出直径3~40纳米、长度达微米量级的半导体氮化镓一维纳米棒,并提出碳纳米管限制反应的概念。

并与美国斯坦福大学戴宏杰教授合作,在国际上首次实现硅衬底上碳纳米管阵列的自组织生长。

  准一维纳米丝和纳米电缆,由中国科学院固体物理研究所张立德研究员等完成。

他们利用碳热还原、溶胶-凝胶软化学法并结合纳米液滴外延等新技术,首次合成了碳化钽纳米丝外包绝缘体SiO2纳米电缆。

  用催化热解法制成纳米金刚石,由中国科学技术大学的钱逸泰等完成。

他们用催化热解法使四氯化碳和钠反应,以此制备出了金刚石纳米粉。

  但是,同国外发达国家的先进技术相比,我们还有很大的差距。

德国科学技术部曾经对纳米技术未来市场潜力作过预测:

他们认为到2000年,纳米结构器件市场容量将达到6375亿美元,纳米粉体、纳米复合陶瓷以及其它纳米复合材料市场容量将达到5457亿美元,纳米加工技术市场容量将达到442亿美元,纳米材料的评价技术市场容量将达到27.2亿美元。

并预测市场的突破口可能在信息、通讯、环境和医药等领域。

  总之,纳米技术正成为各国科技界所关注的焦点,正如钱学森院士所预言的那样:

"纳米左右和纳米以下的结构将是下一阶段科技发展的特点,会是一次技术革命,从而将是21世纪的又一次产业革命。

"

 

纳米材料的合成以及在农业和医学方面的应用

纳米科技已在国际间形成研究开发的热潮,世界各国将发展纳米科技作为国家科技发展战略目标的一部分,纷纷投入巨资用于纳米科技和材料的研究开发。

纳米材料是纳米科技的重要组成部分,日益受到各国的重视。

各国(地区)制定了相应的发展战略和计划,指导和推进纳米科技和纳米材料的发展,将支持纳米技术和材料领域的研究开发作为21世纪技术创新的主要驱动器,纳米科技和材料展现了其广阔的发展前景和趋势。

各国纳米科技/材料发展战略计划和重点研究领域

当前世界上已有30多个国家从事纳米科技的研究开发活动,各国对纳米科技的投资增长加快,已从1997年的4.32亿美元增加至2002年的21.74亿美元,2002年世界各国(地区)政府投资纳米科技领域的经费比1997年增加了503%(见表1)。

从表1可以看出,2000年以来,各国(地区)政府投入纳米科技的研究开发经费增长速度加快。

美国、日本和西欧是纳米科技投资的大国(地区),其他国家和地区对纳米科技投资总额还不及美国和日本单个国家的投资多。

美国自2000年2月提出“国家纳米技术计划”(NNI),纳米科技研究开发经费从2001财年的4.22亿美元增至2004财年的8.49亿美元(见表2)。

2000年NNI实施计划确定了5个重点发展的战略领域(见表3),近几年来这5个战略研究领域所包含的研究内容有调整。

2003财年重大挑战项目涉及的重点研究领域:

1)“设计”组装更强、更轻、更硬并具有自修复和安全性的纳米材料:

10倍于当前工业、运输和建筑用钢材强度的碳和陶瓷结构材料;强度3倍于目前遇100摄氏度高温就融化的汽车工业用材料的聚合物材料、多功能智能材料;

2)纳米电子学、纳米光电子学和纳米磁学:

提高计算机运行速度并使芯片的存储效率提高百万倍;使电子的存储量增加到数千太比特将单位表面积的存储量提高1千倍;增加数百倍的带宽改变通信方式;

3)在卫生保健方面,通过诊断和治疗器件减少卫生保健的昂贵费用并增强其有效性;利用基因的快速排序和细胞内传感器进行诊断和治疗;探测早期癌细胞并传递药物;研究能使人工器官的排斥率降低50%、探测早期疾病的生物传感器;研制最大限度减少人体组织损害的小型医疗器件;

4)在纳米尺度加工和环境保护方面,清除水中小于300纳米和空气中小于50纳米的污染微粒,以促进环境和水的清洁;

5)提高能源转换和存储效率,使太阳能电池的能效提高1倍;

6)研制探索太阳系外层空间的低功率(lowpower)微型空间飞行器;

7)研究纳米生物器件,以减轻人类因治疗产生的痛苦:

快速有效的生物化学探测器;保护健康、修复受损组织的纳米电子/机械/化学器件;

8)在经济与安全运输方面,引入新型材料、电子学、能源和环境等方面的概念;

9)在国家安全方面,密切注视纳米电子学、多功能材料和纳米生物器件的重大挑战。

2003财年能源部新增3个有关纳米材料特性方面的基础研究项目:

●在纳米材料的合成和处理方面,基本了解涉及材料变形和断裂的纳米加工,利用定模技术有序排列纳米粒子以合成纳米材料。

利用统一尺寸和形状的纳米材料来合成更大尺寸的纳米材料;

●在凝聚态物理方面的纳米材料研究,重点了解怎样使宏观分子平衡构造并自组织成为更大的纳米结构材料;

●从事了解纳米材料的特性在转化和控制催化变化的过程中所扮演的角色等方面的基础研究。

2004财年NNI支持的5个重点发展战略领域仍然与2003年相同(见表3)。

重点强调支持在原子和分子水平上操纵物质的长期研究,充分发挥创造力以构造如分子和人体细胞大小的先进新器件,从而进一步改进应用于信息技术的电子器件;研究开发应用于制造、国防、运输、空间和环境等方面的高性能低维护材料(lower-maintenancematerials);加速纳米技术在生物技术、卫生保健和农业等方面的应用。

研究开发重点领域:

生物-化学-辐射-爆炸探测和保护CBRE方面的纳米技术创新解决方法;纳米制造研究;纳米生物系统;纳米标准仪器开发;教育和培训适应未来产业发展需要的新一代工人;扩大参与纳米技术革命的产业阵容。

日本政府在第二个“科学技术基本计划”(2001-2006年)中,将纳米技术和材料与生命科学、信息通信、环境保护等作为国家的科技重点发展战略的重中之重领域。

该计划在2001年投入纳米科技的研究经费达142亿日元,比2000年度增加了88亿日元。

该计划确定的纳米技术与材料重点研究领域:

纳米物质与材料及其在电子、电磁、光学上的应用;纳米物质与材料及其在结构材料中的应用;纳米信息元件;纳米科技在医疗、生命科学、能源科学及环境科学方面的应用;有关表面和界面控制的物质及材料;纳米计量和标准技术;纳米加工、合成和工程技术;纳米技术的计算、理论和模拟技术;形成安全空间的材料技术等。

日本通产省2001年制定了“纳米材料计划”(NMP),每年经费3500万美元,为期7年(2001-2007年),由政府部门、政府研究机构、大学和产业界联合研究,旨在为产业界建立集研究开发新的纳米功能材料和教育功能于一体的纳米技术材料研究开发平台(见表4)。

通产省2001年还制定并实施了“下一代半导体技术开发计划”,开发50-70纳米的下一代半导体处理基础技术,政府每年投资6000万美元。

日本“先进技术的探索研究”计划涉及了许多有关纳米粒子、纳米结构、纳米生物学和纳米电子学等方面的探索性研究。

项目研究期限定为5年,均由政府出资,5年间政府对项目的平均资助金额为1600万美元。

每个项目通常由15-25名科学家和技术人员组成,分为3个研究小组。

该计划鼓励国内外的产业界、大学和研究机构合作研究。

该计划已完成了许多项目,主要在研项目。

日本文部科学省发布了2003年的科技预算,其中纳米技术和材料的预算总计为1491亿日元(见表6)。

日本内阁府综合科学技术会议于2003年7月14日召开了“纳米技术及材料研究开发推动项目”第6次会议,确定了研究开发的重点领域:

“纳米药物传输系统”、“纳米医疗设备”以及“创新性纳米结构材料”。

这些项目由内阁府牵头、多个政府部门联合推动,于2004年实施。

欧洲共同体力争在纳米科技方面的国际地位,一方面积极创建欧洲新的纳米技术产业,另一方面,力促现有产业部门提高纳米技术能力。

欧洲共同体在第6个框架计划(2002-2006年)中,将纳米技术和纳米科学作为7个重点发展的战略领域之一,经费为12亿美元,确定了具体的战略目标和重点研究领域:

一、纳米技术和纳米科学

将长期的跨学科研究转向了解新现象、掌握新工艺和开发研究工具:

将重点研究分子和介观尺度现象;自组织材料和结构;分子和生物分子力学与马达;集成开发无机、有机、生物材料和工艺的跨学科研究的新方法。

纳米生物技术:

其目标是支持一体化的生物和非生物体的研究,有广泛应用的纳米生物技术,如能用于加工、医学和环境分析系统的纳米生物技术。

重点研究领域涉及芯片实验室(lab-on-chip),生物实体的界面,纳米粒子表面修复,先进的药物传递方式和纳米电子学;生物分子或复合物的处理、操纵和探测,生物实体的电子探测,微流体,促进和控制在酶作用基础上的细胞生长。

创造材料和部件的纳米

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2