方波三角波波形发生器课程设计.docx

上传人:b****1 文档编号:10565418 上传时间:2023-05-26 格式:DOCX 页数:10 大小:142.39KB
下载 相关 举报
方波三角波波形发生器课程设计.docx_第1页
第1页 / 共10页
方波三角波波形发生器课程设计.docx_第2页
第2页 / 共10页
方波三角波波形发生器课程设计.docx_第3页
第3页 / 共10页
方波三角波波形发生器课程设计.docx_第4页
第4页 / 共10页
方波三角波波形发生器课程设计.docx_第5页
第5页 / 共10页
方波三角波波形发生器课程设计.docx_第6页
第6页 / 共10页
方波三角波波形发生器课程设计.docx_第7页
第7页 / 共10页
方波三角波波形发生器课程设计.docx_第8页
第8页 / 共10页
方波三角波波形发生器课程设计.docx_第9页
第9页 / 共10页
方波三角波波形发生器课程设计.docx_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

方波三角波波形发生器课程设计.docx

《方波三角波波形发生器课程设计.docx》由会员分享,可在线阅读,更多相关《方波三角波波形发生器课程设计.docx(10页珍藏版)》请在冰点文库上搜索。

方波三角波波形发生器课程设计.docx

方波三角波波形发生器课程设计

方波、三角波波形发生器课程设计

方波、三角波发生器

摘要

在模拟电子技术当中,我们会见到各种类型的波形,除了常见的正弦波之外,还有别的各种非正弦波,这些类型各异的波形,广泛应用于模拟电子技术的各个领域。

在模拟电子电路中,各种非正弦波,如矩形波、三角波、锯齿波、阶梯波等,在各种驱动电路及信号处理电路中广泛应用。

波形发生器是一种常用的信号源,广泛的运用于电子电路、自动控制系统和教学实验等领域。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途,通过对函数波形发生器的原理以及构成分析,可以设计一个能变换出三角波、方波的函数波形发生器。

本文利用LM324N产生一个可调频和调幅的方波信号,通过此信号来产生三角波。

电子电路设计、仿真与实践第1页

1设计题目...............................................................22设计任务和要求.........................................................23整体电路设计...........................................................24仿真及仿真结果.........................................................75PCB板的绘制............................................................96误差分析..............................................................107总结..................................................................118心得体会..............................................................11

电子电路设计、仿真与实践第2页

1设计题目

方波、三角波发生器

2设计任务和要求

要求设计并用分立元件和集成运算放大器制作能产生方波和三角波波形的波形发生器。

3整体电路设计

1)信号发生器:

信号发生器又称信号源或振荡器。

按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。

各种波形曲线均可以用三角函数方程式来表示,如三角波、锯齿波、矩形波(含方波)、正弦波。

通过模拟电子技术设计的波形发生器是一个不需要外加输入信号,靠自身振荡产生信号的电路。

2)电路设计:

整体电路由RC振荡电路,反相输入的滞回比较器和积分电路组成。

理由:

a)矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是

它的重要组成部分;

b)产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引

入反馈;

c)输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中

要有延迟环节来确定每种状态维持的时间。

RC振荡电路:

即作为延迟环节,又作为反馈电路,通过RC充放电实现输出状态的自

动转换。

反相输入的滞回比较器:

矩形波产生的重要组成部分。

积分电路:

将方波变为三角波。

电子电路设计、仿真与实践第3页

2)整体电路框图:

为实现方波,三角波的输出,先通过RC振荡电路,反相输入的滞回比较器得到方波,方波的输出,是三角波的输入信号。

三角波进入积分电路,得出的波形为所求的三角波。

其电路的整体电路框图如图1所示:

反相输入的滞回比较RC振荡电路

图1生成输入方波积分电路

输入生成三角波积分电路

3)单元电路设计及元器件选择

a)方波产生电路

电路产生振荡,通过RC电路和滞回根据本实验的设计比较器时将产生幅值约为12V

(约12V)。

电压比较电路用于比较模拟输入电压与的方波,因为稳压管选择1N4742A

设定参考电压的大小关系,比较的结果决定输出是高电平还是低电平。

滞回比较器主要用来将信号与零电位进行比较,以决定输出电压。

图3为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R起限流作用,R和R构成正反馈,运算放大器当u>u时工作321pn在正饱和区,而当u>u时工作在负饱和区。

从电路结构可知,当输入电压u小于某一负npin值电压时,输出电压=-;当输入电压大于某一电压时,=+。

运算放大器在两uUuuUoZinoZ

个饱和区翻转时u=u=0,由此可确定出翻转时的输入电压。

u用u和u表示,有pnpino

11u,uinoRu,RuRR2in1o12u,,p11R,R12,

RR12

根据翻转条件,令上式右方为零,得此时的输入电压

电子电路设计、仿真与实践第4页

RR11u,,u,,U,,UinoZthRR22

U称为阈值电压。

滞回电压比较器的直流传递特性如图4所示。

设输入电压初始值小于-U,thth

此时=-;增大,当=时,运放输出状态翻转,进入正饱和区。

如果初始时刻uUuuUoZininth

运放工作在正饱和区,减小u,当u=-U时,运放则开始进入负饱和区。

ininth

un

-uRo3+up+

uRRin12

UZ

图3滞回电压比较器

uo

UZ

uin

-UU0thth

-UZ

图4滞回电压比较器的直流传递特性

如果给图3所示电路输入三角波电压,其幅值大于U,设t=0时,u=-U,其输出thoZ波形如图5所示。

可见,输出为方波。

电子电路设计、仿真与实践第5页

UZ

Uth

0t

-Uth

-UZ

图5输入为三角波时滞回电压比较器的输出波形b)(方波—三角波发生电路

给图3所示的滞回电压比较器级联一积分电路,再将积分器的输出作为比较器的输入,

如图6所示。

由于积分电路可将方波变为三角波,而比较器的输入又正好为三角波,因此

可定性判断出,图6电路的输出电压u为方波,u为三角波,如图7所示。

o1o2

C

-RR3

+-uo2

++

+uRRo112

UZ

图6方波—三角波发生电路下面分析其振荡周期。

积分器输出电压从-U增加到+U所需的时间为振荡周期T的一半,thth

由积分器关系式

T,t102U,,U,(,U)dtththZ,t0RC

电子电路设计、仿真与实践第6页

1T2U,UthZ2RC

R14RCR21Rf,,1T,注意到,故,振荡频率则为U,UthZT4RCRRR122

uo1UZ

Uthuo2

0t

-Uth

-UZ

图7方波—三角波发生电路的输出波形

c)元器件选择

1))通用型集成单运放LM324N

电路所用的运放选用LM324N,LM324N的管脚图如图所示,其特点是电压适应范围较宽,可在?

5,?

18V范围内选用;具有很高的输入共模、差模电压,电压范围分别为?

15V和?

30V;内含频率补偿和过载、短路保护电路;可通过外接电位器进行调零.

波形发生器用到得脚位为2.3.4.6.7

脚位2:

INV.INPUT

脚位3:

NON-INV.INPUT

脚位4:

V-

脚位6:

OUTPUT

脚位7:

V+

LM324N管脚分布

2))稳压二极管

双稳压二极管的稳定电压根据方波幅值选取,由设计要求可取12伏特的稳压二极管,本次试验采用的1N4742A稳压二极管。

3))电阻

电阻R4根据双稳压二极管的最大电流确定,此处可取10k,,其他电阻分别有

电子电路设计、仿真与实践第7页

10K,25K,130K电阻。

4))电容

电容C根据振荡频率要求确定,本次实验采用的100nF电容。

1R24))由式,令R=25K,,为达到所要求的频率,可求得三组值:

f,,1TRCR41

当频率为100HZ时,R=10K,R=130K,C=100nF23

5))原件:

元件数量元件数量

LM324N2130K电阻2

10K电阻5104陶瓷电容1

25K电阻11N4742A2

6))系统的电路总图:

4仿真及仿真结果

仿真是通过Multisim软件进行的。

仿真电路测试过程:

电子电路设计、仿真与实践第8页

仿真频率为100HZ的方波和三角波的波形图:

电子电路设计、仿真与实践第9页

5PCB板的绘制

Sch电路图

PCB电路图

电子电路设计、仿真与实践第10页

6误差分析

误差的来源主要有系统误差(固有误差)和偶然误差(随机误差)。

而产生系统误差的原因有:

仪器本身的缺陷、理论公式和测量方法的近似性、环境的改变和个人存在的不良测量习惯等。

系统误差来源有工具误差、装置误差、人身误差、外界误差、方法误差等。

偶然误差主要是某种未知的偶然因素对实验者、仪器、被测物理量的影响而产生的。

本设计中,器件实际测量参数跟理论参数不吻合是引起误差的最大原因。

如电路中的电阻R,它影响了输出电压的大小,如果R取合适值,三角波和方波输出波形不失真,而R出现少许改变的时候,会使输出电压和输出频率出现很大的误差.

电子电路设计、仿真与实践第11页

7总结

本设计作品的优点有如下几点:

一.电路只有一个延迟环节,延迟时间短.二.由于积分电路引入了深度电压负反馈,所以在负载电阻相当大的变化范围里,三角波电压几乎不变.本设计作品的不足之处主要是:

一.方波输出电压小于2Vcc是因为运放输出极有PNP型两种晶体组成复合互补对称电路输出方波时,两管轮流截止或饮和导通,由于导通时输出电阻的影响,使方波输出度小于电源电压值.二.受运放影响,三角波传输特性区线性度差容易引起失真.

以后可能改进的方案:

在电路上加上保护电路,在三角波输出端加上滤波网络改善输出波形.

8心得体会

本次课程设计是在前导验证性认知实验基础上,进行更高层次命题的课程设计,是在教师指导下独立查阅资料、设计、安装和调试特定功能的电子电路。

通过这次课程设计,我懂得了要完成一个电路的设计,理论基础是根基,实践操作是完成实物的重要部分,而创新能力则决定了一个电路的价值.因为设计一个电路,决不是简单地按课本的电路图进行焊接成型,我们要进行电路各个元件参数的计算,这个涉及我们所掌握的理论知识.元件的计算是设计中较为重要的一部分,计算准了,则设计出来的电路误差不大,否则,设计出来的电路性能指标跟要求相差甚远。

最困难的是当电路出现错误是,如何检测出错误之处,如何排除错误,它考验了我们如何运用理论知识和实际的调试的能力.另外,通过这次课程设计,我掌握了常用元件的识别和测试、熟悉了常用的仪器、了解了电路的连接、焊接方法、巩固了基础、提高了实际操作技能、并养成注重设计、追求创新的思维习惯.总而言之,这次课程设计极大的提高我在电子电路方面的各项能力。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2