SteadyState Thermal(稳态热).pptx

上传人:wj 文档编号:10575199 上传时间:2023-05-26 格式:PPTX 页数:52 大小:1.66MB
下载 相关 举报
SteadyState Thermal(稳态热).pptx_第1页
第1页 / 共52页
SteadyState Thermal(稳态热).pptx_第2页
第2页 / 共52页
SteadyState Thermal(稳态热).pptx_第3页
第3页 / 共52页
SteadyState Thermal(稳态热).pptx_第4页
第4页 / 共52页
SteadyState Thermal(稳态热).pptx_第5页
第5页 / 共52页
SteadyState Thermal(稳态热).pptx_第6页
第6页 / 共52页
SteadyState Thermal(稳态热).pptx_第7页
第7页 / 共52页
SteadyState Thermal(稳态热).pptx_第8页
第8页 / 共52页
SteadyState Thermal(稳态热).pptx_第9页
第9页 / 共52页
SteadyState Thermal(稳态热).pptx_第10页
第10页 / 共52页
SteadyState Thermal(稳态热).pptx_第11页
第11页 / 共52页
SteadyState Thermal(稳态热).pptx_第12页
第12页 / 共52页
SteadyState Thermal(稳态热).pptx_第13页
第13页 / 共52页
SteadyState Thermal(稳态热).pptx_第14页
第14页 / 共52页
SteadyState Thermal(稳态热).pptx_第15页
第15页 / 共52页
SteadyState Thermal(稳态热).pptx_第16页
第16页 / 共52页
SteadyState Thermal(稳态热).pptx_第17页
第17页 / 共52页
SteadyState Thermal(稳态热).pptx_第18页
第18页 / 共52页
SteadyState Thermal(稳态热).pptx_第19页
第19页 / 共52页
SteadyState Thermal(稳态热).pptx_第20页
第20页 / 共52页
亲,该文档总共52页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

SteadyState Thermal(稳态热).pptx

《SteadyState Thermal(稳态热).pptx》由会员分享,可在线阅读,更多相关《SteadyState Thermal(稳态热).pptx(52页珍藏版)》请在冰点文库上搜索。

SteadyState Thermal(稳态热).pptx

ThermalAnalysis,ChapterSix,ANSYSWorkbenchSi,TrainingManual,ThermalAnalysis,ChapterOverview,Inthischapter,performingsteady-stateandtransientthermalanalysesinSimulationwillbecovered:

GeometryAssembliesSolidBodyContactHeatLoadsSolutionOptionsResultsandPostprocessingWorkshop6.1ThermalTransientSetupTransientSettingsTransientLoadsTransientResultsWorkshop6.2,ThecapabilitiesdescribedinthissectionaregenerallyapplicabletoANSYSDesignSpaceEntralicensesandabove,exceptforanANSYSStructurallicense.,TrainingManual,ThermalAnalysis,BasicsofSteady-StateHeatTransfer,Forasteady-state(static)thermalanalysisinSimulation,thetemperaturesTaresolvedforinthematrixbelow:

Assumptions:

Notransienteffectsareconsideredinasteady-stateanalysisKcanbeconstantorafunctionoftemperatureQcanbeconstantorafunctionoftemperatureANSYSWorkbenchSi,TrainingManual,ThermalAnalysis,BasicsofSteady-StateHeatTransfer,FouriersLawprovidesthebasisofthepreviousequation:

Heatflowwithinasolid(FouriersLaw)isthebasisofKHeatflux,heatflowrate,andconvectionaretreatedasboundaryconditionsonthesystemQConvectionistreatedasaboundaryconditionalthoughtemperature-dependentfilmcoefficientsarepossibleItisimportanttoremembertheseassumptionsrelAaNteSdYtSoWorkbenchSiperformingthermalanalysesinSimulation.,ANSYSWorkbenchSi,TrainingManual,ThermalAnalysis,PhysicsFilters,Ifathermal-onlysolutionistobeperformedthePhysicsFiltercanbeusedtofiltertheGUIUnder“ViewmenuPhysicsFilter,”unselectthe“Structural”and“Electromagnetic”optionsThisappliestooptionsinthe“Environment”and“Solution”levelsonly,Ifathermal-stresssimulationistobeperformed,donotturn,offthestructuralphysicsfilter,TrainingManual,ThermalAnalysis,A.Geometry,Inthermalanalyses,alltypesofbodiessupportedbySimulationmaybeused.Solid,surface,andlinebodiesaresupportedForsurfacebodies,thicknessmustbeinputintheDetailsviewoftheGeometrybranchLinebodiecross-sectionandorientationisdefinedwithinDesignModeler,Cross-sectionandorientationinformationresultsinAaNnSYSWorkbenchSi,effectivethermalcross-sectionOnlytemperatureresultsareavailableforlinebodiesThe“PointMass”featureisnotavailableinthermalanalyses,TrainingManual,ThermalAnalysis,Geometry,Shellandlinebodyassumptions:

Forshellbodiesthrough-thicknesstemperaturegradientsarenotavailable.ShellsassumetemperaturesontopandbottomofsurfacearethesameForlinebodiesthroughthicknessvariationinthetemperatureisnotavailable.Linebodiesassumethetemperatureisconstantacrossthecross-sectionTemperaturevariationwillstillbeconsideredalongthelinebodyANSYSWorkbenchSi,ANSYSWorkbenchSi,TrainingManual,ThermalAnalysis,MaterialProperties,ThermalConductivityisinputintheEngineeringDataapplicationTemperature-dependentthermalconductivityisinputasatable,Ifanytemperature-dependentmaterialpropertiesexist,thiswillresultinanonlinearsolution.,Theonlyrequiredmaterialpropertyisthermalconductivity,ANSYS,WorkbenchSi,TrainingManual,ThermalAnalysis,B.AssembliesSolidBodyContact,Whenimportingassembliesofsolidparts,contactregionsareautomaticallycreatedbetweenthesolidbodiesenablingheattransferbetweenpartsinanassembly,ModelshownisfromasampleInventorassembly.,TrainingManual,ThermalAnalysis,AssembliesContactRegionNoheatspreadingisconsideredinthecontact/targetinterface,HeatflowwithinthecontactregionisinthecontactnormaldirectiononlyHeatflowsonlyifatargetelementispresentinthenormaldirectionofacontactelement,Inthefigureontheleft,thesolid,greendouble-aArroNwsSinYdiScateWorkbenchSiheatflowwithinthecontactregion.Heatflowonlyoccursifatargetsurfaceisnormaltoacontactsurface.Thelight,dottedgreenarrowsindicatethatnoheattransferwilloccurbetweenparts.,TrainingManual,ThermalAnalysis,AssembliesContactRegion,Ifthepartsareinitiallyincontactheattransferwilloccurbetweentheparts.IfthepartsareinitiallyoutofcontactnoheattransfertakesplaceSummary:

ANSYSWorkbenchSiThepinballregiondetermineswhencontactoccursandisautomaticallydefinedandsettoarelativelysmallvaluetoaccommodatesmallgapsinthemodel,ANSYSWorkbench,Si,TrainingManual,ThermalAnalysis,AssembliesContactRegion,Ifthecontactisbondedornoseparation,thenheattransferwilloccur(solidgreenlines)whenthesurfacesarewithinthepinballradius,Inthisfigureontheright,thegapbetweenthetwopartsisbiggerthanthepinballregion,sonoheattransferwilloccurbetweentheparts,PinballRadius,ANSYSWorkbenchSi,TrainingManual,ThermalAnalysis,AssembliesThermalConductanceTheamountofheatflowbetweentwopartsisdefinedbythecontactheatfluxq:

whereTcontactisthetemperatureofacontact“node”andTtargetisthetemperatureofthecorrespondingtarget“node”Bydefault,TCCissettoarelativelyhighvaluebasedonthelargestmaterialconductivitydefinedinthemodelKXXandthediagonaloftheoverallgeometryboundingbox,ASMDIAG.,Thisessentiallyprovidesperfectconductancebetweenparts.,ANSYSWor,kbenchSi,TrainingManual,ThermalAnalysis,AssembliesThermalConductance,PerfectthermalcontactconductancebetweenpartsmeansthatnotemperaturedropisassumedattheinterfaceOnemaywanttoincludefinitethermalconductanceinsteadThecontactconductancecanbeinfluencedbymanyfactors:

surfaceflatnesssurfacefinishoxidesentrappedfluidscontactpressuresurfacetemperatureuseofconductivegrease,DT,T,x,ANSYSW,orkbenchSi,TrainingManual,ThermalAnalysis,AssembliesThermalConductance,InANSYSProfessionallicensesandabove,theusermaydefineafinitethermalcontactconductance(TCC)ifthePurePenaltyorAugmentedLagrangeFormulationisusedThethermalcontactconductanceperunitareaisinputforeachcontactregionintheDetailsviewIfthermalcontactresistanceisknowninvertthisvalueanddividebythecontactingareatoobtainTCCvalue,If“ThermalConductance”isleftat“ProgramChosen,”near-perfectthermalcontactconductancewillbedefined.thermalcontactconductancecanbeinputwhichisthesameasincludingthermalcontactresistanceatacontactinterface.,ANSYSWorkbenchSi,TrainingManual,ThermalAnalysis,AssembliesThermalConductance,ThermalContactNotes:

ForsymmetriccontacttheuserdoesnotneedtoaccountforadoublethermalcontactresistanceMPCbondedcontactallowsforperfectthermalcontactconductance,ANSYSWorkbench,Si,TrainingManual,ThermalAnalysis,AssembliesSurfaceBodyContact,Edgecontactisasubsetofgeneralcontact:

ForcontactincludingshellfacesorsolidedgesonlybondedornoseparationbehaviorisallowedForcontactinvolvingshelledgesonlybondedbehaviorusingMPCformulationisallowed:

Theusercansetthesearchdirectionaseitherthetargetnormalorpinballregion.Ifagapexiststhepinballregioncanbeusedforthesearchdirectiontodetectcontactbeyondagap,ANSYSWor,kbenchSi,TrainingManual,ThermalAnalysis,AssembliesSpotWeld,Spotweldsprovidediscreetheattransferpoints:

SpotwelddefinitionisdoneintheCADsoftware(currentlyonlyDesignModelerandUnigraphics)SpotweldscanbecreatedinSimulationmanuallyatvertices,TrainingManual,ThermalAnalysis,C.HeatLoads,HeatFlow:

Aheatflowratecanbeappliedtoavertex,edge,orsurface.TheloadgetsdistributedformultipleselectionsHeatflowhasunitsofenergy/timeHeatFlux:

AheatfluxcanbeappliedtosurfacesonlyHeatfluxhasunitsofenergy/time/area,InternalHeatGeneration:

ANSYSWorkbenchSiAninternalheatgenerationratecanbeappliedtobodiesonly.Heatgenerationhasunitsofenergy/time/volume,Apositivevalueforheatloadwilladdenergytothesystem.,TrainingManual,ThermalAnalysis,AdiabaticConditions,PerfectlyInsulated:

PerfectlyinsulatedconditionisappliedtosurfacesThisisthedefaultconditioninthermalanalyseswhennoloadisapplied:

ThisloadtypeisusedasawaytoremoveloadingonspecifiedsurfacesForexample,itmaybeeasierforausertoapplyheatfluxorconvectiononanentirepart,thenusetheperfectlyinsulatedconditiontoselectivelyremovetheloadingonsomesurfacesANSYSWorkbenchSi,ANSYSWorkbenchSi,TrainingManual,ThermalAnalysis,ThermalBoundaryConditions,Temperature,ConvectionandRadiation:

AtleastonetypeofthermalboundaryconditionmustbepresenttopreventthethermalequivalentofrigidbodymotionGivenTemperatureorConvectionloadshouldnotbeappliedonsurfacesthatalreadyhaveanotherheatloadorthermalboundaryconditionappliedtoitPerfectinsulationwilloverridethermalboundaryconditionsGivenTemperature:

Imposesatemperatureonvertices,edges,surfacesorbodiesTemperatureisthedegreeoffreedomsolvedfor,ANSYSWorkbenchSi,TrainingManual,ThermalAnalysis,ThermalBoundaryConditions,Convection:

Appliedtosurfacesonly(edgesin2Danalyses)Convectionqisrelatedtoafilmcoefficienth,thesurfaceareaA,andthedifferenceinthesurfacetemperatureTsurface&ambienttemperatureTbulk,“h”and“Tbulk”areuser-inputvaluesThefilmcoefficienthcanbeconstantortemperaturedependent,ANSYSWorkben,chSi,TrainingManual,ThermalAnalysis,ThermalBoundaryConditionsTemperature-DependentConvection:

Select“NewConvection”fortheCorrelationThe“EngineeringData”tabwillopenandtheCoefficientTypecanthenbedefinedfortheconvectionloadDeterminewhattemperatureisusedforh(T):

AveragefilmtemperatureT=(Tsurface+Tbulk)/2SurfacetemperatureT=TsurfaceBulktemperatureT=TbulkDifferenceofsurfaceandbulktemperaturesT=(Tsurface-Tbulk),Selectthetemperature-dependencyfromthepull-downmenu,ANSYSWorkbenchSi,TrainingManual,ThermalAnalysis,ThermalBoundaryConditions,Tempera

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 物理

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2