凝胶的机械性能醇凝胶气凝胶眼镜.docx

上传人:b****3 文档编号:10897778 上传时间:2023-05-28 格式:DOCX 页数:32 大小:192.36KB
下载 相关 举报
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第1页
第1页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第2页
第2页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第3页
第3页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第4页
第4页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第5页
第5页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第6页
第6页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第7页
第7页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第8页
第8页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第9页
第9页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第10页
第10页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第11页
第11页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第12页
第12页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第13页
第13页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第14页
第14页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第15页
第15页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第16页
第16页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第17页
第17页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第18页
第18页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第19页
第19页 / 共32页
凝胶的机械性能醇凝胶气凝胶眼镜.docx_第20页
第20页 / 共32页
亲,该文档总共32页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

凝胶的机械性能醇凝胶气凝胶眼镜.docx

《凝胶的机械性能醇凝胶气凝胶眼镜.docx》由会员分享,可在线阅读,更多相关《凝胶的机械性能醇凝胶气凝胶眼镜.docx(32页珍藏版)》请在冰点文库上搜索。

凝胶的机械性能醇凝胶气凝胶眼镜.docx

凝胶的机械性能醇凝胶气凝胶眼镜

MechanicalPropertiesofGels:

FromAlcogelandAerogelstoGlasses

INTRODUCTION

Themostfascinatingfeaturesofgels(lowsoundvelocity,highspecificsurfacearea,lowthermalandelectricconductivity…)aregenerallyduetotheirverylargeporosity,whichcanbeashighas99%.However,thecounterpartofthishugeporosityispoormechanicalpropertiesandtheconsequenceisthatgelstendtocrackduringdrying.So,oneofthemostdifficultproblemsinsol–gelscienceistomakelargebodiesofdriedgels(xerogelsoraerogels).

Thedryingstressesareattributedtocapillaryphenomenaanddifferentialstrainwhichresultfromapressuregradientintheporeliquid(Brinker,1990).Differentwayshavebeenstudiedtosolvethisproblemandforexamplesupercriticaldrying(SD)allowsonetoavoidthecapillarystressesandmonolithicaerogelcanbeobtained(Kistler,1932).

Thepotentialitiesofthismaterial(Cerenkovdetector,acousticorthermalinsulator,hostmatrixforcatalysts)areincreasedifconsiderednotonlyasanendproduct,butasaprecursor.Byasetofsinteringtreatments,thesilicaaerogelscanbeeasilytransformedintopuresilicaglass(Woignier,1990)andappropriateheattreatmentsleadtoPartiallyDenseAerogel(PDA)whichcanbeusedasahostmatrixforthesynthesisofdopedglassesorcomposites.

Theknowledgeofthemechanicalpropertiesofgelsandaerogelsisofinterestfortechnologicalapplications,butalsofortheoreticalresearch.Gelsareidealmaterials,inthesensethattheevolutionofphysicalpropertiesinrelationwiththestructurecanbeexperimentallystudiedoverthewholerangeofporosity,from0to99%.

Themechanicalbehaviorofgels,xerogelsandaerogels,isgenerallydescribedintermsofbrittleandelasticmaterials,likeglassorceramics(West,1988;Zarzycki,1988;Woignier,1988a).Duringmechanicaltestingevenforveryporousmaterial(99%),thestress–straincurveshowsaperfectelasticbehaviorandtheconchoidalfracturemorphologyindicatesthatthematerialisbrittle,likeaconventionalglass.Themaindifference,comparedtosilicaglass,istheorderofmagnitudeoftheelasticandmechanicalmoduliwhichare104timeslower.However,ifthisanalogyispertinentwhengelsareunderatensionstress(bendingtest),theyexhibitamorecomplicatedresponsewhenthestructureiscompressed(compressiontest).Thenetworkislinearlyelasticundersmallstrains,thenexhibitsyield,followedbydensificationandplastichardening(Pirard,1995;Scherer,1995;Duffours,1995).Asaconsequenceoftheplasticshrinkage,itispossibletoeliminatetheporesandstiffenthegelatroomtemperature.Wewillseethattheseoppositebehaviors(elasticandplastic)aresurprisinglyrelatedtothesametwokindsofgelfeatures:

thesilanolcontentandtheporesizedistribution.Differentkindsofgelstructure(fractalornotfractal)havebeensynthesized,throughacontrolofthedifferentstepsoftransformation,suchassinteringandplasticcompactionandwerestudiedasafunctionoftheirstructure.Theinfluenceofthesinteringprocess,comparedtotheplastictransformation,ontheelasticpropertiesandmechanicalbehaviorareexplainedbytheassociatedstructuralchanges.Therelationshipsbetweenstructuralandmechanicalpropertieswillbediscussedintermsofthecellularmodel,percolationtheory,fractalstructureandtheblobsandlinksmodel.

EXPERIMENTALPROCEDURE

Differentfamiliesofgelshavebeenelaboratedforthesestudies.Themainaresilicaalcogelsandaerogels.Thealcogelsarepreparedbyhydrolysisandpolycondensationreactionsoftetramethoxysilane(TMOS).TheTMOSisdissolvedinvariousamountsofethanol,therebyadjustingtheoxidecontentofthesol(andthefinalbulkdensityofthematerial).Thesolutionsarehydrolyzedunderneutral,basic(NH4OH,5×10–2N)oracidic(HNO3,10–4N)conditions.Thealcogelsaretransformedintoaerogelsbysupercriticalevacuationofthesolvent.Forseveralsamples,thesupercriticalheattreatmentisnotfollowedbytheevacuationofthesuperfluid,sothesolventinvadesthegelduringcooling.Theinterestofthisprocedureistopreparematerialsfullofsolventforwhichthesolidnetworkhasundergonethesameheattreatmentasforclassicalaerogels.Thesesamplesarecalled“re-wettedaerogels”.ThesamplesarelabeledN,BorA(withrespecttothecatalyst),followedbytheTMOSweightpercent.

Thedensificationoftheaerogelsisobtainedbyheattreatmentatatemperatureof1050°Cand,asafunctionofthesinteringtime,thebulkdensityincreases.ThesamplesarelabeledPDAxx(PartiallyDenseAerogel)wherexxisthebulkdensityexpresseding/cm3.ThePCAxxsamples(PartiallyCompressedAerogel)correspondtogelswhosedensityhasbeenincreasedbyroomtemperaturecompression.

Theelasticmoduliandthemodulusofruptureofthesamplesweremeasuredbythe3-pointsbendingtechnique,usinganInstrontestingmachinewitha20Nloadcellandbysoundvelocity.ThefracturetoughnesswasmeasuredusingtheSingleEdgeNotchedBeam(SENB)methodinthethreepointbending.Generally,thebeambendingdataallowcalculationoftheYoung’smodulus;E.Thatistrueforaerogels,but,inthecaseofthealcogelsamples,thebeambendingtestyieldstheshearmodulus.Duetothelowpermeabilityofthealcogels,thefluidforcesthenetworktobehaveasifitwereincompressible.Thenthevolumeofthesampleisunchangedbythedeformationandthefluidexertsatransversestressonthegelnetwork,providingameasurementoftheshearmodulusG(Scherer,1988).Inordertocomparetheelasticpropertiesoftheaerogelsandthealcogels,themeasurementshavebeenmadeonalcogelsandre-wettedaerogels.

Theirstructurewillbecharacterizedbysmallanglescatteringtechniques(SANSandSAXS).Scatteringvectorsq,rangingfrom0.0018to0.3Å–1,wereexploredtoallowadeterminationofthedensity–densitycorrelationfunctioninthelengthscalefrom3to500Å.

MECHANICALBEHAVIOROFALCOGELSANDAEROGELSElasticModuliandMechanicalRupture

Whateverthegoaloftheaerogelsynthesis,itisimportanttoknowhowthesupercriticaldrying(SD)canmodifythephysicalandchemicalfeaturesoftheparentalcogel.Theobjectofthispartistocharacterizetheevolutionofthemechanicalproperties.Wewillstudytheinfluenceofsynthesisparameterssuchastheconcentrationofgelifyingprecursors,pHofthehydrolysissolutionandaging,onthephysico-chemicaltransformationsobservedduringthesupercriticalfluidextraction.Intheliterature,mechanicaltestinghasbeenmadeeitheronalcogels(West,1988;Zarzycki,1988;Scherer,1988),oronaerogels(Calemczuk,1987;Dumas,1990;Woignier,1988b;Gross,1992)andcomparisonofthetwosetsofdatasuggeststhatsupercriticaldryingenhancesthemechanicalfeaturesofthesamples.Theapplicationoflinearelasticfracturemechanicstowetgelsisquestionable,becauseitisnecessarytojustifythatthematerialhasanelasticbehaviorandcanbetreatedasacontinuum.Scherer(1992)hasdiscussedthisproblemandhasshownthatitseemsreasonabletoapplyfracturemechanics,becausetheelasticregionnearthetipofthecrackismuchlargerthantheplasticdeformationatthecracktip.Aspreviouslymentioned,thebeambendingtestyieldsdifferentelasticmoduliforalcogels(G)andforaerogels(E).IfwewanttofollowtheinfluenceofSDonthemechanicalfeatures,theshearmodulushasbeenmeasuredonalcogelsandre-wettedaerogels.GcanalsobecalculatedfromEandthePoisson’sratiov.TheshearmodulusisrelatedtoEbyE=2(1+v)G.ThePoisson’sratio,measuredbyBrillouinscatteringandsoundvelocitypropagation,iscloseto0.2overthewholerangeofaerogeldensityandfordifferentcatalysts.InfactGcalculatedfromEandvandGmeasuredonre-wettedaerogels,givesimilarresults(Woignier,1992).

Figure14-1showstheinfluenceofSDonthemechanicalproperties,Gandthemechanicalstrengthσofaneutralsetofsamples.ItisclearthatGandσincreasebyafactorof10–20.TheeffectofconcentrationisalsoshownandobviouslythemechanicalpropertiesimprovewiththeTMOSconcentration,overalmost2ordersofmagnitude.However,duringSD,ashrinkageisobservedandthechangeofthemechanicalpropertiescouldbeattributedtothisshrinkage,whichincreasestheloadbearingfractionofsolid.InFigure14-2,theshearmodulusofthedifferentsetsofsamples(neutral,basicandacid)havebeenplottedasafunctionofthefractionofsolids.Gvaluesofre-wettedaerogelsarestillhigherbyafactor4–5.Thisfigureshowsalsothat,iftheacidicandneutralsampleshavenearlythesamemechanicalproperties,forthebasicset,thevaluesofGarelower.

Figure14-1.EvolutionoftheelasticandmechanicalpropertiesGandσasafunctionoftheTMOScontentfortheneutralsetsofalcogelsandre-wettedgels

Figure14-2.EvolutionofGasafunctionofthebulkdensityforneutral,acidandbasicsetsofalcogelsandre-wettedgels.

ToexplainthestrengtheningofthematerialsduringSD,wecaninvoketwokindsofprocessesoccurringintheautoclave.Thefirstmustberelatedtotheformationofsiloxanebondsbetween“danglingbonds”inthealcogel.Thesebondscontributetothemass,butnottotheconnectivityofthenetwork.Whentwobranchescomeintocontact,condensationreactionsofsilanolgroupstakeplace,increasingtheconnectivity.Thisprocesswouldincreasethestiffnessandthestrength,butwouldalsoimposestressesonthealcogelnetworkwhichcouldexplaintheshrinkage.Thesecondmechanismofstrengtheningisduetothegrowthofthenecksbetweenparticles.Thisgro

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 表格模板 > 合同协议

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2