micro ct 原理及应用.docx

上传人:b****3 文档编号:11167939 上传时间:2023-05-29 格式:DOCX 页数:11 大小:29.73KB
下载 相关 举报
micro ct 原理及应用.docx_第1页
第1页 / 共11页
micro ct 原理及应用.docx_第2页
第2页 / 共11页
micro ct 原理及应用.docx_第3页
第3页 / 共11页
micro ct 原理及应用.docx_第4页
第4页 / 共11页
micro ct 原理及应用.docx_第5页
第5页 / 共11页
micro ct 原理及应用.docx_第6页
第6页 / 共11页
micro ct 原理及应用.docx_第7页
第7页 / 共11页
micro ct 原理及应用.docx_第8页
第8页 / 共11页
micro ct 原理及应用.docx_第9页
第9页 / 共11页
micro ct 原理及应用.docx_第10页
第10页 / 共11页
micro ct 原理及应用.docx_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

micro ct 原理及应用.docx

《micro ct 原理及应用.docx》由会员分享,可在线阅读,更多相关《micro ct 原理及应用.docx(11页珍藏版)》请在冰点文库上搜索。

micro ct 原理及应用.docx

microct原理及应用

Micro-CT原理及应用2010-3-5来源:

北京力途科技有限公司>>进入该公司展台Micro-CT原理及应用1895年,WilhelmC.Roentgen发现了X射线,并为夫人拍下了世界上第一张X片——戴戒指的手掌照片。

1967年,GodfreyN.Hounsfield发明了第一台CT设备,能够从多个角度摄片,采集被摄物体的三维信息,在不破坏物体的情况下观察其内部结构。

1970年代,医院开始使用CT诊断疾病。

数十年来,这一伟大技术已经广泛应用于各种领域,例如医学(组织器官、生理代谢过程成像)、药学(药效检测、新药开发)、材料学(新材料的开发)、工业(各种器件的质检和探伤)、农业(木材和种子的质检和分析)、工程(建筑材料内部孔隙度、连通度和渗透性分析)、珠宝(真伪识别和最佳切割方案设计)、考古(化石的结构和成分分析)等领域。

(更多CT应用……)最为人们所熟知的CT是应用于临床检查的医学CT,第一幅CT图片显示的就是头颅影像。

经过40多例如螺旋CT、发明的速度极慢的平移式笔形束CT已经发展成为种类繁多的CT家族,年的发展,Hounsfield64排容积CT、定量CT。

(更多CT技术背景……)CT设备的基本分类类型FOV分辨率描述视野临床CT,以人体扫描为主,安装定量分析软件即成为QCT(定量CT)。

螺旋CT发明以来,CT10-60cm500-1500μm扫描速度不断加快,几分钟就可以完成全身扫描。

但是受到FOV尺寸和辐射剂量的影响,难以提高分辨率。

四肢定量CT(peripheralQuantitativeCT),扫描人体的四肢,兼可用作临床诊断和科学研究。

pQCT能够分别分析骨小梁和骨皮质,pQCT5-15cm50-500μm并可以进行生物力学分析,准确预测骨折风险,而且不受体位、体型和骨质增生的影响,对骨质疏松的风险评估比DEXA有明显优势。

显微CT,采用微焦点X线球管,分辨率高,microCT1-8cm5-80μminvitro用于科学研究。

包括但是成像范围小,差不多一个细胞一个点

invivo(离体)和(活体)两类,前者用于骨骼等标本,后者用于活体小动物扫描。

CT显微镜(X-RayComputerizedTomographyMicroscopy),采用同步加速器产CTM0.01-0.5cm0.1-10μm生的平行X线成像。

分辨率最高,达到亚微米级,但是FOV极小。

单能谱X线,成像质量高。

1980年代,由于普通CT无法满足科学研究对分辨率的苛刻要求,学术界开始研发显微CT,即MicroCT。

MicroCT(也称为显微CT、微焦点CT或者微型CT)采用了与普通临床CT不同的微焦点X线球管,分辨率高达几个微米,仅次于同步加速X线成像设备的水平,具有良好的“显微”作用。

而高分辨率付出的代价是扫描样品的体积很小,只有几个厘米,体现其“微型”的一面。

与临床CT普遍采用的扇形X线束(FanBeam)不同的是,MicroCT通常采用锥形X线束(ConeBeam)。

采用锥形束不仅能够获得真正各向同性的容积图像,提高空间分辨率,提高射线利用率,而且在采集相同3D图像时速度远远快于扇形束CT。

MicroCT成像原理

MicroCT能够提供的2类基本信息:

几何信息和结构信息。

前者包括样品的尺寸、体积和各点的空间坐标,后者包括样品的衰减值、密度和多孔性等材料学信息。

除此之外,SCANCO的有限元分析功能,还能够提供受检材料的弹性模量、泊松比等力学参数,分析样品的应力应变情况,进行非破坏性的力学测试。

MicroCT的2种基本结构样品静止,X线球管和探测器运动:

这种结构和临床螺旋CT一致,球管绕样品旋转。

扫描速度快,射线剂量小,空间分辨率较低,多用于活体动物扫描。

样品运动,X线球管和探测器固定:

样品在球管和探测器之间自旋,并可做上下和前后移动。

扫描速度较慢,射线剂量大,空间分辨率高,多用于离体标本扫描。

MicroCT的2类应用对象invivo活体():

研究对象通常为小鼠、大鼠或兔等活体小动物,将其麻醉或固定后扫描。

可以实现生理代谢功能的纵向研究,显著减少动物试验所需的动物数量。

和医学临床CT类似,活体小动物MicroCT也能够进行呼吸门控和增强扫描(采用造影剂)。

invitro离体():

研究对象通常为离体标本(例如骨骼、牙齿)或各种材质的样品,分析内部结构和力学特性。

也可以使用凝固型造影剂灌注活体动物,对心血管系统、泌尿系统或消化系统进行精细成像。

MicroCT的主要应用领域骨骼。

骨骼是MicroCT最主要的应用领域之一,其中骨小梁又是主要研究对象。

骨松质和骨皮质的变化与骨质疏松、骨折、骨关节炎、局部缺血和遗传疾病等病症有关。

目前,MicroCT技术在很大程度上取代了破坏性的组织形态计量学方法。

牙齿及牙周组织。

能够从3D整体结构出发,对根管形态改变、龋齿破坏、牙组织密度变化、牙槽骨结构和力学特骨小梁性的变化等情况进行研究。

生物材料。

例如,分析体外制备仿生材料支架的孔隙率、强度等参数,优化支架设计;扫描需要置换的组织样品,获取三维图像后输出为STL文件进行快速成形(CAD/CAM),等等。

疾病机制研究。

例如,研究不同基因或信号通路对骨骼的数量或质量的影响,疾病状态对骨骼发育/修复的影响,评价高脂血症对心脏瓣膜钙化生物材料的影响,细胞因子对骨折后组织修复时血管生长的影响,等等。

新药开发。

例如,研究新的骨质疏松药物药物及疗效评价,MicroCT已经称为一种重要的临床前检测技术。

其它。

微型器件的质检和探伤,建筑材料内部孔隙度、连通度和渗透性分析,珠宝的真伪识别和最佳切割方案设计,以及化石结构分析等。

活体小鼠胸腔成像(容积再现)以下实验图片是国产小动物Micro-CT系统的实验结果案例,更多信息请咨询北京力途科技有限公司!

CT成像重建效果:

真实小鼠经过CT重建后结果经伪彩修饰后的三维鼠小鼠CT图小鼠骨骼三维图

大鼠骨小梁1大鼠骨小梁2大鼠骨小梁3软件后处理:

数据接口:

DICOM、JPEG、TIFF、BMP、IM0、RAW等格式图像文件的输入输出二维处理:

图像浏览、选择、处理和显示,二维几何变换及测量,连续图像播放等三维处理:

三维组织分割,表面模型重建及分层显示,切片重组三维显示:

真实感显示,光照参数调节,三维几何变换,三维测量图像分割:

提供多种分割方法(FastMarching,LevelSet…)实验图片——以下图片由中山大学肿瘤防治中心提供注射造影剂实验:

(采用的造影剂为FenestraVC)图一:

注射造影剂11min后

图二:

注射造影剂VC45min后图三:

注射造影剂61min后外物植入实验:

1.在小鼠体内植入镁条,观察镁条分解情况(图片见下页)A:

植入镁条30min后;B:

植入镁条4d后;C:

植入镁条14d后;2.人肝癌细胞植入实验

人肝癌细胞植入14d后腹部形成肿瘤的小鼠【名词解释】CT值CT值(CTnumber)是以水的CT值为零,而相对于其他物质X线的衰减值。

例如,空气的CT值为-1000,而骨密质的CT值为+1000,人体除骨密质和肺以外,CT值基本在-100~+100之间。

CT值的标准单位是HU(Hounsfield)。

组织密度越大,CT值越高。

如果某一组织发生病变而致密度改变,则会影响到CT值的改变,这对CT诊断有很大价值。

骨矿含量或骨矿物质含量(BoneMineralContent,BMC),单位是g。

BMC骨密度或骨矿物质密度(BoneMineralDensity,BMD),2DBMD的BMD单位是g/cm^2,3DBMD的单位是mg/cc。

骨形态发生蛋白(BoneMorphogeneticProtein,BMP)是转化生长因BMP子β超家族成员之一,具有诱导未分化的间充质干细胞向成软骨细胞和成骨细胞定向分化与增殖的能力,能促进新骨形成。

骨表面积(BoneSurface,BS),单位是mm^2。

BS骨表面积和骨体积的比值,单位是1/mm。

BS/BV骨表面积和组织体积的比值,单位是1/mm。

BS/TV骨体积(BoneVolume),单位是mm^3。

BV相对骨体积或骨体积分数,单位是%。

BV/TV连接密度(ConnectivityDensity,Conn.D.),单位是1/mm^3。

Conn.D.皮质骨面积(CorticalboneArea,Ct.Ar),单位是mm^2。

Ct.Ar皮质骨厚度(CorticalboneThickness,Ct.Th),单位是μm。

Ct.Th

皮质骨宽度(CorticalboneWidth,Ct.Wi),单位是μm。

Ct.Wi各向异性的程度(DegreeofAnisotropy,DA),是ROI平均截距长DA度椭圆中长径和短径的比值。

在骨质疏松初期,承重骨小梁的DA通常增加,随骨质疏松加剧,DA会减小。

DICOM医学数字成像和通信标准(DigitalImagingandCommunicationsinMedicine,DICOM)是美国放射学会(AmericanCollegeofRadiology,ACR)和国家电子制造商协会(NationalElectricalManufactorersAssociation,NEMA)为主制定的用于数字化医学影像传送、显示与存储的标准。

在,DICOM标准中详细定义了影像及其相关信息的组成格式和交换方法,利用这个标准,人们可以在影像设备上建立一个接口来完成影像数据的输入/输出工作。

DICOM标准以计算机网络的工业化标准为基础,它能帮助更有效地在医学影像设备之间传输交换数字影像,这些设备不仅包括CT、MR、核医学和超声检查,而且还包括CR、胶片数字化系统、视频采集系统和HIS/RIS信息管理系统等。

该标准1985年产生,目前版本为2003年发布的DICOM3.02003版本。

Distance距离变换(distancetransformation)是定量分析骨小梁的方法之一,Transformation该方法可以计算样品中的每一个体素与最近的骨骼-空气介面(背景)之间的距离。

计算得到的距离可以采用以该体素为中心、距离为半径的球体来直观地表示,从图片上看,该球体恰好位于该结构内部。

计算过程中,通过大球体替代其内部小球体的方法去处多余的球体。

由该方法计算得到的Tb.N、Tb.Th和Tb.Sp是最为广泛采用的。

该方法的详细内容参见瑞士苏黎世大学发表的论文:

Anewmethodforthemodel-independentassessmentofthicknessinthree-dimensionalimages.JMicrosc,1997;185:

67-75FOV视野或检查野(FieldofView,FOV),是CT等成像设备的重要性能参数之一,用于衡量成像设备能够进行有效成像的空间尺寸。

HA羟基磷灰石(Hydroxyapatite,HA),是组成骨骼的主要物质。

目前,通常在体模内置入已知密度的HA,用于校准CT值。

HUHU(HounsfieldUnits)是CT值的单位,以CT的发明人GodfreyNewboldHounsfield的名字命名,念作“胡”。

IPL图像处理语言(ImageProcessingLanguage,IPL)是SCANCO的MicroCT设备软件中的高级图像处理语言,由SCANCO的专家AndresLaib编写。

MAR骨矿化沉积率(MineralAppositionRate。

MAR),单位是μm/天。

MIL平均截距长度(MeanInterceptLength,MIL)是定量分析骨小梁的

方法之一,该方法可以计算测试线在ROI内部的截距长度。

MIL能够测定样品表面积与体积的比率(BS/BV),进而估计Tb.N、Tb.Th和Tb.Sp。

MIL分布能够确定MIL椭圆体的方向和各向异性的程度(DegreeofAnisotropy)。

该方法的详细内容参见:

Distributionofmembranethicknessdeterminedbylinealanalysis.JMicrosc.1978;113:

27-43.MTF调制传递函数(ModulationTransferFunction,MTF),用于评估成像设备(例如CT机)物理分辨率。

与像素分辨率(NormialResolution)或检测能力(Detectability)不同,以MTF表示的物理分辨率是真实衡量CT等成像设备空间分辨率的客观指标,表示为8μm@10%MTF(10%MTF水平时的物理分辨率为8μm)。

OVX卵巢摘除(ovariectomy,OVX),把卵巢摘除的动物(通常是大鼠或小鼠)作为妇女绝经后骨质疏松症的动物模型。

PACS医学图像管理系统(PictureArchivingandCommunicationSystem,PACS)是对医学图像信息进行数字化采集、存储、管理、传输和重现的系统。

它的主要作用是,利用计算机系统代替传统的胶片图像记录、胶片和报告的库房存储、检查图像的人工传递、在光箱上重现图片。

PACS充分利用了计算机、网络的特点,将医学图像进行数字化处理,通过网络进行传输,利用显示设备重现图像。

ROI感兴趣区(RegionofInterest,ROI)是使用软件工具在图像中定义得到的封闭区域,该区域通常具有相似的特性。

3D图像中定义的ROI也称为VOI(VolumeofInterest)。

sham假手术(sham-operated),模拟卵巢摘除手术的过程,但是保留卵巢,作为OVX动物模型的阴性对照。

SMI结构模型指数(StructureModelIndex,SMI),定义骨小梁板状(plate-like)和杆状(rod-like)的程度,板状骨小梁和杆状骨小梁的SMI数值分别为0和3。

发生骨质疏松时,骨小梁从板状向杆状转变,SMI数值增加。

STLSTL格式最初出现于1988年美国3DSYSTEMS公司生产的SLA快速成形机中,STL就是StereoLithography(立体印刷术)的缩写,它是将三维模型的表面近似表达为小三角形平面的组合,非常相似于有限元分析中的三结点平面单元。

Tb.N骨小梁数量(TrabecularNumber,Tb.N),是指给定长度内骨组织与非骨组织的交点数量,单位是1/mm。

发生骨质疏松时,Tb.N的值减小。

TBPf骨小梁模式因子(TrabecularBonePatternfactor,TBPf),衡量骨小梁凸面和凹面的程度,单位是1/mm。

低TBPf值提示骨小梁由杆状

向板状变化,发生骨质疏松时TBPf值增加。

Tb.Sp骨小梁分离度(TrabecularSeparation/Spacing,Tb.Sp),是指骨小梁之间的髓腔平均宽度,单位是μm。

Tb.Sp增加,提示骨吸收增加,可能发生骨质疏松。

在多孔材料中,Tb.Sp即可理解为孔隙率。

Tb.Th骨小梁厚度(TrabecularThickness,Tb.Th),是指骨小梁的平局厚度,单位是μm。

发生骨质疏松时,Tb.Th值减小。

在多孔材料中,Tb.Th即可理解为孔壁厚度。

TRI三角测量法(triangulation,TRI)是定量分析骨小梁的方法之一,该方法以各种不同形状和尺寸的三角形表示ROI表面,然后计算ROI内部四面体的体积和三角形的面积。

用该方法计算BS/BV比MIL方法更为直接,也可以估算Tb.N、Tb.Th、Tb.Sp、MIL椭圆体的方向和各向异性程度。

该方法的详细内容参见瑞士苏黎世大学发表的论文:

DirectThree-DimensionalMorphometricAnalysisofHumanCancellousBone:

MicrostructuralDatafromSpine,Femur,IliacCrest,andCalcaneus.JBoneMinerRes.1999;14(7):

1167-1174.VOI见ROI。

表面再现表面再现(surfacerendering)是显示物体表面三维图像的方法。

优点是所需数据量较少、处理速度较快,缺点是仅有表面图像而没有内部结构信息。

部分容积效体素不连续地显示一个物体,使物体中的细节被平均分配,即体素内应的细节由一个加权平均值表达,这种现象被称为部分容积效应(partialvolumeeffect),是CT成像中常见的图像伪影,使密度差别较大的物体边缘变模糊。

层厚越大,部分容积效应就越严重。

插值插值或内插(interpolation)是采用数学方法在一抑制函数的两端数值,估计该函数在两端之间任一值的方法。

CT扫描采集的数据是离散的、不连续的,需要从两个相邻的离散值求得其间的函数值。

内插的方法有很多种,例如线性内插、率过内插和优化采样扫描等。

重建原始扫描数据经过计算机采用特定的算法处理,得到能够用于诊断的图像,这种处理方法或过程称为重建(reconstruction)。

图像重建速度是衡量CT机性能的一个重要指标。

重建函数核重建函数核(kernel)又称重建滤波器、滤波函数。

CT扫描通常会包含一些必要的参数,如球管的电压、电流、层厚等,重建函数核是其中一个重要内容。

它是一种算法函数,决定或影响图像的分辨率和噪声等。

常见的重建函数核有高分辨率、标准和软组织3种模式:

高分辨率模式是一

种强化边缘、轮廓的函数,能够提高分辨率,但是图像噪声也相应增加;软组织模式是一种平滑、柔和的函数,图像对比度下降,噪声减少,密度分辨率提高;标准模式则是没有任何强化或柔和作用的算法。

重组重组(reformation)是不涉及原始数据处理的一种图像处理方法,如多平面重组、三维图像处理等,即,在横断面图像的基础上,重新组合或构建成三维影像。

由于使用已形成的横断面图像,因此重组图像的质量与已形成的横断面图像有密切关系。

窗口窗口(window)是根据人眼的视觉特性采用计算机设置的不同灰度标尺。

窗口的设置包括了全部约4000个CT值范围,根据人眼的需要可相应调节,以适应诊断需要。

窗口技术通常采用窗宽和窗位的设置来调节,窗宽以W(Width)表示,窗位以L(Level)或C(Center)表示。

定位扫描定位扫描(ScoutView)是用于确定后续精细扫描区域的初扫。

多平面重组多平面重组(multi-planarreformation,MPR)把体素重新排列,在二维屏幕上显示任意方向上的断面。

CT采集的一组断层图像,通过计算机处理后形成各向体素间距相同的三维容积数据,然后用正交的3个平面(冠状面、矢状面和横断面)截取三维数据,生成3幅二维断层图像。

操作者用鼠标移动3个平面的位置,使3幅图像随之产生协同变化。

分辨率分辨率包括空间分辨率(spatialresolution)、密度分辨率(densityresolution)和时间分辨率(temporalresolution)。

空间分辨率是CT机在高对比度情况下分辨相邻2个最小物体的能力,有每厘米包含线对数(LP/cm)和毫米线径(mm)2种表示方法。

空间分辨率应该在10%MTF的前提下进行比较,目前高档CT的分辨率在15LP/cm(10%MTF)左右。

密度分辨率是CT机在低对比度情况下分辨相邻2个最小物体的能力,表示方法是某一物体尺寸时密度的百分比浓度差,例如一个3mm的物体,密度分辨率是3%,通常CT密度分辨率范围是0.25%~0.5%/1.5~3mm。

时间分辨率是CT机在单位时间内采集图像的帧数,表示动态扫描能力。

在一般情况下,分辨率就是指空间分辨率。

分离分离(separation)是指将一个完整的三维容积图像分为几个部分的过程,与图像合并(combination)相对。

傅立叶变换傅立叶变换(Fouriertransform)是图像重建方法的一种,是一种将空间信号转换为频率信号的数学方法,可以将一个空间信号转换为具有不同频率和幅度的正弦和余弦函数。

辐射剂量CT等成像设备使用过程中,操作人员和受检动物都需要注意射线防护。

目前,通行的辐射剂量度量方法有以下几种:

l照射量(exposure),指直接度量X射线对空气电离能力的量,表示辐射场强度,从电荷量的角度来反映射线强度。

单位是库仑?

千克-1

(C?

kg-1)或伦琴(R);l吸收剂量(absorbeddose),指每单位质量的被照射物质所吸收任何电离辐射的评价能量,从能量角度反映照射量。

单位是戈瑞(Gy)或拉德(rad)。

l剂量当量(doseequivalent),即使在吸收剂量相同的情况下,不同辐射类型所产生的生物效应的严重性各不相同,为了便于比较,引入剂量当量这一概念。

它是采用适当的修正因子对吸收剂量进行加权,使修正后的吸收剂量更能反映辐射对肌体的危害程度。

单位是希沃特(Sv)或雷姆(rem)。

因此,剂量当量(Sv)比吸收剂量(Gy)或照射量(C?

kg-1)更能反映CT机的X射线对人体的危害程度。

通常情况下,自然环境辐射1-10mSv/年,全身CT扫描约10mSv/次,乘坐一次越洋飞机接受的辐射<5μSv。

光线跟踪在医学图像显示过程中,通常采用阴影和光线来加强表现三维图像中物体的立体感,最常见的光线应用方法是光线跟踪法(raytracing)。

灰阶灰阶(graylevel/scale)是根据像素的CT值在图像上显示的一段不同亮度的信号,把从白色到黑色之间的灰度分成若干等级,则称为灰阶或灰度级。

人眼一般只能识别40级左右连续的灰阶,而组织密度灰阶差要大得多。

在CT图像显示技术中,常通过窗口技术对窗宽、窗位进行调节,以适应视觉的最佳范围。

甲状旁腺激甲状旁腺激素(parathyroidhormone,PTH)是肽类激素,主要功能素是影响体内质钙与磷的代谢,作用于骨细胞和破骨细胞,使骨盐溶解,从骨动员钙,使血液中钙离子浓度增高,同时还作用于肠及肾小管,使钙的吸收增加,从而维持血钙的稳定。

若甲状旁腺分泌功能低下,血钙浓度降低,出现手足抽搐症;如果功能亢进,则引起骨质过度吸收,容易发生骨折。

矩阵矩阵(matrix)是像素以二维方式排列的阵列,与重建后图像的质量有关。

在相同大小的采样野中,矩阵越大像素也就越多,重建后图像质量越高。

目前常用的矩阵尺寸有512×512、1024×1024和2048×2048。

卷积卷积(convolution)是图像重建运算处理的重要步骤。

卷积处理通常需要使用滤波函数来修正图像,卷积结束后形成一个新的用于图像重建的投影数据。

美国机械美国机械工程师协会(theAmericanSocietyofMechanical工程师协会Engineers,ASME)创立于1880年,是一个非盈利性的教育和技术国际组织,服务于来自世界

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2