湿陷性黄土地基处理方案设计.docx

上传人:b****3 文档编号:11271716 上传时间:2023-05-30 格式:DOCX 页数:20 大小:43.84KB
下载 相关 举报
湿陷性黄土地基处理方案设计.docx_第1页
第1页 / 共20页
湿陷性黄土地基处理方案设计.docx_第2页
第2页 / 共20页
湿陷性黄土地基处理方案设计.docx_第3页
第3页 / 共20页
湿陷性黄土地基处理方案设计.docx_第4页
第4页 / 共20页
湿陷性黄土地基处理方案设计.docx_第5页
第5页 / 共20页
湿陷性黄土地基处理方案设计.docx_第6页
第6页 / 共20页
湿陷性黄土地基处理方案设计.docx_第7页
第7页 / 共20页
湿陷性黄土地基处理方案设计.docx_第8页
第8页 / 共20页
湿陷性黄土地基处理方案设计.docx_第9页
第9页 / 共20页
湿陷性黄土地基处理方案设计.docx_第10页
第10页 / 共20页
湿陷性黄土地基处理方案设计.docx_第11页
第11页 / 共20页
湿陷性黄土地基处理方案设计.docx_第12页
第12页 / 共20页
湿陷性黄土地基处理方案设计.docx_第13页
第13页 / 共20页
湿陷性黄土地基处理方案设计.docx_第14页
第14页 / 共20页
湿陷性黄土地基处理方案设计.docx_第15页
第15页 / 共20页
湿陷性黄土地基处理方案设计.docx_第16页
第16页 / 共20页
湿陷性黄土地基处理方案设计.docx_第17页
第17页 / 共20页
湿陷性黄土地基处理方案设计.docx_第18页
第18页 / 共20页
湿陷性黄土地基处理方案设计.docx_第19页
第19页 / 共20页
湿陷性黄土地基处理方案设计.docx_第20页
第20页 / 共20页
亲,该文档总共20页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

湿陷性黄土地基处理方案设计.docx

《湿陷性黄土地基处理方案设计.docx》由会员分享,可在线阅读,更多相关《湿陷性黄土地基处理方案设计.docx(20页珍藏版)》请在冰点文库上搜索。

湿陷性黄土地基处理方案设计.docx

湿陷性黄土地基处理方案设计

1、概述

湿陷性黄土地基处理主要取决于湿陷性黄土的特殊性质,湿陷性黄土地基的变形包括压缩和湿陷性两种,当基底压力不超过地基土的容许承载力时,地基的压缩变形很小,大都在其上部结构的容许变形值围以,不会影响建筑物的安全和正常使用。

湿陷变形是由于地基被水浸湿引起的一种附加变形,往往是局部和突然发生,且不均匀,对建筑物破坏性大,危害严重,因此对湿陷性黄土地区的建筑物不论地基承载力是否达到容许承载力,都应对地基进展处理,前者以消除湿陷为目的,后者以提高承载力为主,同时应消除黄土的湿陷性。

我国湿陷性黄土分布很广,各地区黄土的差异很大,地基处理时应区别对待,并结合以下特点:

1〕湿陷性黄土的地区差异,如湿陷性和湿陷敏感性的强弱,承载能力与压缩性的大小和不均匀性的程度等;2〕建筑物的使用特点,如用水量大小,地基浸水的可能性;3〕建筑物的重要性和其使用上对限制不均匀下沉的严格程度,结构对不均匀下沉的适应性;4〕材料与施工条件,以与当地的施工经验。

湿陷性黄土的地基处理措施是采用机械手段对根底的湿陷性黄土进展加固处理,或更换另一种材料改变其物理性质,达到消除湿陷性、减少压缩和提高承载能力的目的,其多以第一个目的即消除湿陷为主。

湿陷性黄土的地基处理,在处理深度和处理围上区分:

1〕浅处理,即消除建筑物地基的局部湿陷量;2〕深根底处理,即消除建筑物地基的全部湿陷量,这种方法包括采用桩根底或深根底穿透全部的湿陷性黄土层。

在湿陷性黄土地区设计措施,主要有地基处理措施、防水措施和结构措施三种。

地基处理的常用方法有垫层、重锤夯实、强夯、土〔或灰土〕桩挤密和深层孔夯扩等,可以完全或局部消除地基的湿陷性,或采用桩根底或深根底穿透湿陷性黄土层,使建筑物根底坐落在密实的非湿性土层上,保证建筑物的安全和正常使用。

防水措施使用以防止大气降水、生产和生活用水以与浸入地基,其中包括场地排水、地面的防水、排水沟和管道的排水、防水等,是湿陷性黄土地区建筑物设计中不可缺少的措施。

结构措施的作用是使建筑物适应或减少不均匀沉降所造成的危害。

在湿陷性黄土地区,国外使用较多的地基处理方法:

重锤表层夯实、强夯、垫层、挤密桩复合地基、垫处理、预浸水、爆扩桩、化学加固和桩根底等。

近年来,深层孔夯扩挤、高压旋喷注浆法,以与复合载体夯扩桩等也得到推广使用。

目前我国以重锤表层夯实、土〔或灰土〕垫层、强夯、深层孔夯扩、高压注浆固结土〔或灰土〕挤密桩复合地基、桩根底应用较多,经验比拟丰富,对于其他的处理方法如此应用较少,或未使用过。

化学加固如此多用于湿陷事故处理,从国外情况来看,与我国不同,保加利亚多采用水泥土垫层、混凝土挤密短桩,俄罗斯等国认为当处理厚度大于12m的黄土时,热处理和预浸水与水下爆扩相结合都比桩根底经济,根据我国经验,灰土垫层、灰土〔或土〕挤密桩可分别适用于处理3m左右和10m左右厚的湿陷性黄土层的湿陷性,10m以上可采用深层孔强夯以与桩根底等。

预浸水法可用于处理厚度大、自重湿陷性强烈的湿陷性黄土场地,但该方法处理后距地表一定深度的土层应具有湿陷性,必须采用其他方法另作处理。

总之,在具体选用湿陷性黄土的处理方法时,应根据建筑场地的湿陷性类别、湿陷等级、以与地区特点,首先考虑因地制宜和就地取材等原如此,并根据施工技术可能达到的条件,经过技术经济比照予以选用,必要时可几种方法综合考虑使用。

2、湿陷性黄土的加固机理

2.1湿陷性黄土的分布与特征

我国湿陷性黄土的分布面积约占我国黄土总面积的60%左右,大局部分布在黄河中游地区,北起长城附近,南达岭,西自乌鞘岭,东至太行山,除河流沟谷切割地段和突出的高山外,湿陷性黄土几乎遍布本地区,面积达27万平方公里,是我国黄土的典型分布。

除此以外,在中部、河西走廊,西北陆盆地、东北松辽平原等地有零星分布,面积一般较小,且不连续,湿陷性黄土一般都覆盖在下卧的非湿陷性黄土层上,其厚度为六盘山以区较大,最大达30m,六盘山以东地区稍薄,例如渭河谷的湿陷性黄土厚度多为几米到几十米,向东至西部如此更小,并且常有非湿陷性黄土层位于湿陷性黄土层之间。

湿陷性黄土的最大特点是:

在土的自重压力或土的附加压力与自重压力共同作用下,受水浸湿时将产生大量而急剧的附加下沉,这种现象称为湿陷,它与自重湿陷性黄土一般土受水浸湿时所表现的压缩性稍有增加的现象不同。

由于各地区黄土形成时的自然条件差异较大,因此其湿陷性也有较大差异,有些湿陷性黄土受水浸湿后的土的自重压力下就产生湿陷,而另一些黄土受水浸湿后只有在土的自重压力和附加压力共同作用下产生湿陷。

前者称为自重湿陷性黄土,后者称为非自重湿陷性黄土,一般将黄土开始湿陷时的相应压力称为湿陷起始压力,可看作黄土受水浸湿后的结构强度。

当湿陷性黄土实际所受压力等于或大于土的湿陷起始压力时,土就开始产生湿陷。

反之,如小于这一压力,如此黄土只产生压缩变形,而不发生湿陷变形。

湿陷变形不同于压缩变形,通常压缩变形在荷载施加后立即产生,随着时间的增长而逐渐趋向稳定。

对于大多数湿陷性黄土地基来说,〔不包括饱和黄土和新近堆积的黄土〕,压缩变形在施工期间就能完成一大局部,竣工后三个月到半年即根本趋于稳定。

而湿陷变形的特点是:

变形量大,常常超过正常压缩变形的几倍甚至几十倍;发生快,一般在浸水1-3小时就开始湿陷。

就一般的湿陷事故而言,往往在1-2天就可能产生20-30cm的变形量,这种量大、速率快而又不均匀的变形往往使建筑物发生严重变形甚至破坏。

而湿陷的出现完全取决于受水浸湿的机率,有的建筑物在施工期间即产生湿陷事故,而有的如此在几年甚至几十年后才出现湿陷事故。

湿陷性黄土湿陷变形的主要指标:

湿陷系数,湿陷的起始压力和湿陷的起始含水量,其中以湿陷系数最为重要。

湿陷系数是单位厚度土样在土自重压力或自重压力与附加压力共同作用下浸水所产生的湿陷量。

它的大小反映了黄土对水的敏感程度,湿陷系数越大,表示土受水浸湿后的湿陷量越大,因而对建筑物的危害越大,反之,如此小。

湿陷性黄土湿陷系数一般通过室压缩仪进展测试,并按下式计算湿陷系数的

〔26.2.1〕

式中:

为土样在压力p作用时下沉稳定后的高度;

为上述加压稳定后的土样,在浸水作用下,下沉稳定后的高度;

为土样的原始高度;

为土样在压力p作用下下沉稳定后的孔隙比;

为上述加压稳定后土样在浸水作用下下沉稳定后的孔隙比;

为土样的原始孔隙比。

湿陷系数在工程中主要用于:

1〕判别黄土的湿陷性;2〕鉴别湿陷性黄土湿陷性的强弱;3〕预估湿陷性黄土地基的湿陷量。

对黄土湿陷性的判别,按现行黄土规,以0.015作为界限值,大于或等于0.015,如此定为湿陷性黄土,小于0.015如此定为非湿陷性黄土。

利用湿陷系数,可大致判断湿陷性黄土湿陷性的强弱,一般认为,

≤湿陷性,0.03<

≤0.07为中等湿陷性;

>0.07为强湿陷性。

湿陷性黄土在局部荷载的作用下,在湿陷过程中湿陷性黄土地基不但产生竖向变形,还将产生水平位移。

主要是土在浸水状态下土的结构遭受破坏,抗剪强度急剧降低,侧向限制就大为减弱。

在双重因素的影响下,使地基土湿陷时产生了大量的侧向挤出,导致湿陷量扩大。

对于自重湿陷性黄土,在自重压力作用下受水浸湿后由于其湿陷变形区各水平面上不存在压力差,没有侧向挤出现象,但在外荷载作用下,在附加应力围产生侧向挤出。

一般最大水平位移发生在根底四个周边的竖向剖面上,而且集中β–β〔β为根底宽度〕的深度围,基底压力或基底面积大,如此侧向挤出的水平围和影响深度也大。

2.2湿陷性黄土地基的各种地基处理方法的加固机理与影响因素

湿陷性黄土地区地基处理,尽管在地基处理技术的应用上同其他地区相比在施工工艺等方面差异不大,但其加固机理与方法又进一步表现了湿陷性黄土的地区特征,往往在提高承载力的同时,对黄土的湿陷性进展消除。

1、重锤外表夯实与强夯

重锤外表夯实适用于处理饱和度不大于60%的湿陷性黄土地基。

一般采用2.5-3.0t的重锤,落距4.0-4.5m,可以消除基底以下1.2-1.8m黄土层湿陷性。

在夯实层的围,土的物理、力学性质获得显著改善,平均干重度明显增大,压缩性降低,湿陷性消除,透水性减弱,承载力提高。

非自重湿陷性黄土地基,其湿陷起始压力较大,当用重锤处理局部湿陷性黄土层后,可减少甚至消除黄土地基的湿陷变形。

因此在非自重湿陷性黄土场地采用重锤夯实的优越性较明显。

强夯法处理湿陷性黄土地基,是在上述重锤夯实的根底上开展起来的一种地基处理方法,其优点为施工简单、效率高、工期短、对湿陷性黄土湿陷性消除的深度较大,缺点是振动和噪音较大,我国目前在湿陷性黄土地区应用强夯进展地基处理,取得较成功的经验,夯击能量已超过8000KN.m,其对地基的影响深度按梅纳公式进展计算:

  〔26.2.2〕

式中:

H为影响深度,m;Q为重锤,KN;h未落距,m;γ为修正系数,据不同条件〔地质、物理力学性能、孔隙率等〕可取

0.3~0.7;g为重力加速度。

在湿陷性黄土场地各夯击点的夯击数可按最后一击夯沉量等于3-6cm来确定,一般达6-9击,稍湿的湿陷性黄土没有或有很少自由水,在强夯过程中不存在孔隙水压力消散的问题。

无需像夯击饱和土那样要采用间歇多变的夯击方式,可以在一个夯位上连续夯到所需击数,而后在移到下一个夯位上,依次一遍夯实,强夯对湿陷性黄土土湿陷性的消除效果明显,一般可达8-10m。

2、土〔灰土〕垫层

在湿陷性黄土地基上设置土垫层,在我国是一种传统的地基处理方法,已有近两千年的历史,目前被广泛推广采用。

将处理围的湿陷黄土挖去,用素土〔多用原开挖黄土〕或灰土〔灰土比一般为3:

7或2:

8〕在最优含水量状态下分层回填〔压〕实。

采用土垫层或灰土垫层处理湿陷性黄土地基,可用于消除根底底面1-3m土层的湿陷性,〔目前也有6m以上换填,主要做法是下部用素土换填,分层碾压,上部采用灰土垫层〕,减少地基的压缩性,提高地基的承载力,降低土的渗透性〔或起隔水作用〕,往往以消除湿陷作为地基处理的目的。

另外在灰土挤密桩或深层孔夯扩法处理湿陷性黄土地基时,往往在上部采用灰土垫层。

就其处理围来说,土垫层分为建筑物根底〔独立根底和条形根底〕底面下的土〔或灰土〕垫层和建筑物围的整片土〔或灰土〕垫层两种。

在如下情况下宜采用整片灰土垫层:

1〕地基受水浸湿的可能性较大的建筑;2〕湿陷性黄土层厚度较大的自重湿陷性黄土场地,需要全部消除地基的湿陷性采用其他方法较困难时,可与其他方法结合使用〔主要起隔水作用〕,在其他情况下,经技术经济比照认为合理时也可使用。

工程实践证明,采用土〔灰土〕垫层处理湿陷性黄土地基,只要施工质量符合工程要求,一般都能收到良好的效果,在非自重湿陷性黄土地基上尤为突出。

但需指出的是,当灰土〔或土〕垫层质量不符合工程质量要求时,所发生的湿陷事故与未进展地基处理的湿陷性黄土同样严重。

在独立根底或条形根底下设置一定宽度的灰土垫层,有利于途中应力的扩散,增强地基的稳定性,阻止基底下土侧向挤出,从而减小或消除地基的湿陷变形。

在土层一样的湿陷性黄土场地上所做灰土〔或土〕垫层载荷试验明确,垫层的宽度超过根底底面宽度太小,地基受水浸湿后不能有效地防止土的侧向挤出,湿陷变形仍然较大。

因此,垫层每边超出根底底面的宽度不得小于垫层厚度的一半,其超过宽度按下式计算:

B=b+2ztanθ+c 〔26.2.3〕

式中:

B为需处理土层底面的宽度,m;b为条形(或矩形)根底短边的宽度,m;z为根底底面至处理土层底面的距离;c为考虑施工机具影响而外设的附加宽度,宜为20cm;θ为地基压力扩散线与垂直线的夹角,宜为22-30度,用素土处理宜取小值,用灰土处理宜取大值。

设置整片灰土〔土〕垫层是为了消除根底底面以下局部黄土的湿陷性,同时借助于整片灰土〔土〕垫层的隔水效果,可与防水从室外渗入地基,保护整个建筑物围下部未经处理的湿陷性黄土层不致受水浸湿,所以整片垫层超出外墙根底外缘宽度不应小于其厚度,并不得小于2米。

当仅要求消除基地下处理土层的湿陷性时,宜采用局部和整片的土垫层,当同时要求提交土的承载力或水稳性时,宜采用局部或整片灰土垫层。

垫层质量由压实系数控制,并应符合如下要求:

1)

2)

3、灰土〔土〕挤密桩复合地基与孔深层夯扩桩复合地基

灰土〔土〕挤密桩适用于加固地下水以上的湿陷性黄土地基,它是利用打入钢套管,或振动沉管或爆扩等方法,在土中成桩孔,然后在孔中分层填入素土〔或灰土〕并夯实而成。

在成孔和夯实过程中,原处于桩孔部位的土全部挤入周围土层中,使距桩周一定距离的天然土得到挤密,从而消除桩间土的湿陷性并提高承载力。

灰土〔土〕桩是一种柔性桩,灰土〔土〕挤密桩地基,其上部荷载由桩和桩间土共同承当,挤密后的地基为复合地基,类似垫层一样工作,上部荷载通过他往下传递时应力要扩散,而且比天然地基扩散的更快,在加固深度以下,附加应力将大大减少,灰土〔土〕挤密桩对地基的加固处理效果,不仅与桩距有关,还与所处理的厚度与宽度有关。

当处理宽度不足时〔尤其在未消除全部黄土的湿陷性的情况下〕,可能使根底产生较大的下沉,甚至尚失稳定性,根据《湿陷性黄土地区建筑规》〔GBJ25-90〕要求,当为局部处理时,在非自重湿陷性黄土场地,处理宽度两端要超过根底宽度的0.25倍,并不应小于0.5米,在自重湿陷性黄土场地,如要求加固后地基土的湿陷性完全消除,如此处理宽度要超过根底宽度两边各0.75倍,不小于1米。

如果湿陷性黄土地基处理为整片处理时,每边超出建筑物外墙根底外缘的宽度,宜大于处理厚度的一半,处理厚度根据建筑物对地基的要求,地基的湿陷类型和湿陷等数、湿陷性黄土层的厚度以与施工机械能力综合考虑,必要时,应采用防水措施和结构措施。

并根据现行规,对非自重湿陷性黄土场地和自重湿陷性黄土场地,根据建筑物的重要性程度区别对待。

桩间土的挤密系数,对甲、乙类建筑物不宜小于0.88,对其它建筑物不宜小于0.84。

孔填料应采用素土或灰土,分层进展回填夯实。

其压实系数对甲、乙类建筑不宜小于0.95,对其它建筑物不宜小于0.93。

当利用挤密桩对湿陷性黄土地基进展整片处理时,宜设置0.5米厚的灰土〔土〕垫层。

深层孔夯扩桩近些年在湿陷性黄土地区也开始进展应用,用螺旋钻孔,孔径一般为40cm。

夯锤重量一般为20-30KN,孔填料一般为素土或灰土,或建筑物垃圾和废料。

在湿陷性黄土地区建筑地基应用中,成孔后,孔分层夯填时,对孔周围土体进展挤密,其挤密的影响围,与夯锤的夯击能量有关,在消除孔周围土体湿陷性的同时提高地基土的承载力,其受力与灰土〔土〕挤密桩地基相似,所不同的是灰土〔土〕挤密桩地基,在成孔过程中对桩间土的挤密已完成绝大局部,而孔夯扩桩对桩间土的挤密如此在孔充填土料的过程中完成。

其对地基的处理深度较深,可达20米左右,无地下水的限制,在湿陷性黄土地基处理时的要求,一般参考灰土〔或土〕挤密桩地基。

4、桩根底

在湿陷性黄土地区采用桩根底,将桩穿透湿陷性黄土层,在非自重湿陷性黄土地区,桩底端应支承在压缩性较低的非湿陷性土层中。

对自重湿陷性黄土场地,桩底端应支承在可靠的持力层中。

经30多年的工程实践证明,如桩穿透湿陷性土层,支承于可靠的持力层上,如此地基受水浸湿后完全能保证建筑物的安全,反之会导致湿陷事故。

湿陷性黄土地区桩根底一般采用打入桩、静压桩、钻孔或人工挖孔灌注桩以与沉管灌注桩等,近年来使用较多的为钻孔〔或人工挖孔〕灌注桩、静压桩以与沉管灌注桩,在等湿陷性黄土湿陷较强烈的地区大多为端承桩,等湿陷性相对较弱的地区大多为端承摩擦桩或摩擦端承桩。

近年来所作的复合载体夯扩桩主要也是提高桩进入非湿陷性土层时桩端的端承力。

与其他地区所用桩根底不同的是,在湿陷性黄土土层中不但不能考虑桩的摩擦力,还应在桩的承载能力上减去桩的负摩擦力。

所谓负摩擦力,就是浸水后的自重湿陷性黄土层,土的下沉速率大于桩的下沉速率时,土对桩侧外表产生向下作用的摩擦力。

在一般情况下,地基土的竖向位移越大,如此负摩擦力越大。

实验明确,二者之间并不成正比开展,负摩擦力受土的抗剪强度影响,虽然桩土之间的相对位移较大,但浸水后降低的抗剪强度不足以支承外侧饱和土的自重,因而悬附围是有限的。

通常认为,桩基的负摩擦力只出现在自重湿陷性黄土地基中,而非自重湿陷性黄土地基中的桩基如此不需考虑,但多年来湿陷性黄土地基桩基的工程经验证明,非自重湿陷性黄土地基,浸水后的桩基仍然可能产生负摩擦力,虽然负摩擦力数值比自重湿陷性黄土地区要小得多,在有些情况下也不应无视。

自重湿陷性黄土层浸水后将产生湿陷,但桩在荷载作用下也将产生一定下沉。

在桩的上部,土层的下沉大于桩的位移,因而产生负摩擦力;在桩的下部,土的下沉小于桩的位移,将产生正摩擦力。

在负摩擦力过渡为正摩擦力处,有一个“中性点〞,该点处桩的位移与土的下沉相等,因而摩擦力为零。

计算负摩擦力时,只考虑中性点以上局部,也就是负摩擦力的计算深度。

在湿陷性黄土场地的实验证明,中性点的位置根本位于湿陷性黄土层与其下非湿陷性黄土层的交界部位。

因此,负摩擦力的计算深度应等于桩在湿陷性黄土层中的全部桩长。

正负摩擦力的大小,宜通过现场试验确定。

在桩根底施工时,特别是灌注桩成孔后,必须将孔底清理干净,以免影响桩的端承力,造成事故。

5、化学加固法

在我国湿陷性黄土地区地基处理应用较多,并取得实践经验的化学加固方法包括硅化加固法和碱液加固法,其加固机理如下:

硅化加固湿陷性黄土的物理化学过程,一方面基于浓度不大的、粘滞度很小的硅酸钠溶液顺利地渗入黄土的孔隙中,另一方面溶液与土的互相凝结,土起着凝结剂的作用。

单液硅化系由浓度10%~15%的硅酸钠溶液参加2.5%的氯化钠组成。

溶液进入土中后,由于溶液中的钠离子与土中水溶液盐类中的钙离子〔主要为CaSO4〕产生互换的化学反响,即在土颗粒外表形成硅酸凝胶薄膜,从而增强土粒间的连接,填塞粒间孔隙,使土具有抗水性、稳定性,减少土的渗水性,消除湿陷,同时提高地基的承载能力,其化学反响式如下:

Na2O.nSiO2+CaSO4+mH2O→nSiO2.(m-1)H2O+Na2SO4+Ca(OH)2

在反响初期,硅酸凝胶薄膜的厚度很小,只有几微米,因而它不妨碍以后压入溶液的渗透流动,但相隔几小时后,由于凝胶大量生成,土中孔隙被硅酸凝胶充填,毛细管通道被堵塞,使土的透水性降低。

尽管硅酸凝胶薄膜的厚度很小,但是它有足够的强度,能使土在溶液饱和的初期,不会由于外荷作用而产生过大附加下沉。

随着胶膜逐渐加厚和硬化,土的强度也随着时间而增长。

在加固后前半个月,土的强度增长速度最大,而且在一年以后仍有所增长,当土样在水中浸泡时,仍可观察到黄土在继续硬化。

硅化加固中,由于黄土中钙、镁离子参加反响,生成硅酸凝胶,但土体达到一定强度,为了提高加固土体的早期强度,以减少加固过程中附加下沉,可采用加气硅化法,加气硅化一般用CO2和氨气,一般使用CO2较多。

即首先在地基中注入CO2气体,使土中空气局部被CO2占据,使土活化,然后灌入水玻璃溶液,再灌CO2,由于碱性水玻璃强烈吸收CO2,形成自真空作用,促进浆液均匀分布于土中,并渗透到土的微孔,可使95%~97%的孔隙被浆液充填,加固土体的透水性大大降低,地基经过加固后,浸水后的附加下沉量极其微小,湿陷性已完全消除,其地基层缩变形量很小,与天然地基相比,其变形模量,以与地基承载力大大提高。

碱液加固:

利用NaOH溶液加固湿陷性黄土地基在我国始于20世纪60年代,其加如此为;NaOH溶液注入黄土后,首先与土中可溶性和交换性碱土金属阳离子发生置换反响,反响结果使土颗粒外表生成碱土金属氢氧化物,例如:

2NaOH+Ca2+→2Na++Ca(OH)2↓

2NaOH+Ca2+(土粒)→2Na+(土粒)+Ca(OH)2↓

这种反响是在溶液渗入土中瞬间完成的,它所消耗的NaOH仅占加固土所用的一小局部。

土中呈游离状态的SiO2和Al2O3,以与土的微细颗粒〔铝硅酸盐类〕与NaOH作用后产生溶液状态的钠硅酸盐和钠铝酸盐,如:

2NaOH+nSiO2→Na2O+nSiO2+H2O

2NaOH+mAl2O3→Na2O.mAl2O3+H2O

在氢氧化钠溶液作用下,土粒〔铝硅酸盐〕外表会逐渐发生膨胀和软化,相邻土粒在这一过程中更严密地相互接触,并发生外表的相互溶合。

但仅有NaOH的作用,土粒之间的这种溶合胶结〔钠铝硅酸盐类胶结〕是非水稳性的,只有在土颗粒周围存在Ca(OH)2的条件下,才能使这种胶结物转化为强度高且具有水硬性的钙铝硅酸盐的络合物。

依靠这些混合物的生成,使土粒相互结实地胶结在一起,强度大大提高,并且有充分的水稳性。

上述反响是在固—溶相间进展,常温下反响速率较慢,而提高温度如此能大大加快反响的进展。

当土中可溶性和交换性钙、镁离子含量较高时,灌入NaOH溶液即可得到满意的加固效果,如土中的这类离子含量较少,为了取得有效的加固效果,可以采用双液法,即在灌完NaOH溶液后,再灌入NaCl溶液。

这时,后者与土中局部NaOH发生作用,生成Ca(OH)2,局部CaCl2也直接与钠铝硅酸盐络合物生成水硬性的胶结物,其化学反响如下:

2NaOH+CaCl2→2NaCl+Ca(OH)2

Na2O.SiO2.mAl2O3.XH2O+CaCl2→CaO.nSiO2.mAl2O3.XH2O+2NaCl

碱液加固的适用围,自重湿陷性黄土地基能否采用碱液加固,取决于其对湿陷的敏感性。

自重湿陷敏感性强的地基不宜采用碱液加固。

对自重湿陷不敏感的黄土地基经过试验认可并拟采用碱液加固时,应采用卸荷或其他措施以减少灌液时可能引起的较大附加下沉。

当土中可溶性和交换性的钙、镁离子含量较高〔大于10mgcq/100g干土〕时,可只采用碱液一种溶液加固,否如此,需用碱液和CaCl2两种溶液进展加固。

经技术经济比拟,也可采用碱液与生石灰桩的混合加固方法。

但对如下情况不宜采用碱液加固:

①对于地下水位或饱和度大于80%的黄土地基;②已渗入沥青、油脂和其他石油化合物的黄土地基。

6、预浸水法

预浸水法是在修建建筑物前预先对湿陷性黄土场地大面积浸水,使土体在饱和自重压力作用下,发生湿陷产生压密,以消除全部黄土层的自重湿陷性和深部土层的外荷湿陷性。

上部土层〔一般为距地表以下4~5m〕仍具有外荷湿陷性,需要作处理预浸水的浸水坑的边长不得小于湿陷性土层的厚度。

当浸水坑的面积较大时,可分段进展浸水,浸水坑水位不应小于30cm,连续浸水时间以湿陷度变形稳定为准。

其稳定标准为最后5天的平均湿陷量小于5mm。

地基预浸水完毕后,在根底施工前应进展补充勘查工作,重新评定地基的湿陷性,并采用垫层法或强夯法等处理上部湿陷性土层。

预浸水法一般适用于湿陷性黄土厚度大、湿陷性强烈的自重湿陷性黄土场地。

由于浸水时场地周围地表下沉开裂,并容易造成“跑水〞穿洞,影响附近建筑物的安全,所以在空旷的新建地区较为适用。

在已建地区采用时,浸水场地与已建建筑物之间要留有足够的安全距离浸水试坑与已有建筑物的净距,当地基存在隔水层时,应不小于湿陷性黄土层厚度的倍;当不存在隔水层时,应不小于湿陷性黄土层厚度的倍。

此外,还应考虑浸水时对场地附近边坡稳定性的影响。

预浸水法用水量大,工期长。

处理1m2面积至少需用水5t以上。

在一般情况下,一个场地从浸水起至下沉稳定以与土的含水量降低到一定要求时所需的时间,至少需要一年左右。

因此,预浸水法只能在具备充足水源,又有较长施工准备时间的条件下才能采用。

7、其他的加固方法

高压注浆固结法、CFG法等的加固机理与别的地区根本一样,参考其他有关章节,另外在饱和的黄土地区,近几年来也采用粉喷桩法和深层搅拌法,其加固机理见相关章节。

2.3湿陷性黄土地基处理的施工工艺

湿陷性黄土地基处理的常用手段,大多同国地基处理手段的施工方法和施工工艺相似,所不同的是在加固机理上有一定区别。

.1灰土〔或素土〕垫层施工

灰土〔或素土〕垫层施工时,先将处理围的湿陷性黄土全部挖出,并对底部进展夯实或压实。

然后将就地挖出的粘土配成相当于

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经管营销 > 经济市场

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2