HybridpneumaticICE.docx

上传人:b****2 文档编号:11365302 上传时间:2023-05-31 格式:DOCX 页数:25 大小:1.03MB
下载 相关 举报
HybridpneumaticICE.docx_第1页
第1页 / 共25页
HybridpneumaticICE.docx_第2页
第2页 / 共25页
HybridpneumaticICE.docx_第3页
第3页 / 共25页
HybridpneumaticICE.docx_第4页
第4页 / 共25页
HybridpneumaticICE.docx_第5页
第5页 / 共25页
HybridpneumaticICE.docx_第6页
第6页 / 共25页
HybridpneumaticICE.docx_第7页
第7页 / 共25页
HybridpneumaticICE.docx_第8页
第8页 / 共25页
HybridpneumaticICE.docx_第9页
第9页 / 共25页
HybridpneumaticICE.docx_第10页
第10页 / 共25页
HybridpneumaticICE.docx_第11页
第11页 / 共25页
HybridpneumaticICE.docx_第12页
第12页 / 共25页
HybridpneumaticICE.docx_第13页
第13页 / 共25页
HybridpneumaticICE.docx_第14页
第14页 / 共25页
HybridpneumaticICE.docx_第15页
第15页 / 共25页
HybridpneumaticICE.docx_第16页
第16页 / 共25页
HybridpneumaticICE.docx_第17页
第17页 / 共25页
HybridpneumaticICE.docx_第18页
第18页 / 共25页
HybridpneumaticICE.docx_第19页
第19页 / 共25页
HybridpneumaticICE.docx_第20页
第20页 / 共25页
亲,该文档总共25页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

HybridpneumaticICE.docx

《HybridpneumaticICE.docx》由会员分享,可在线阅读,更多相关《HybridpneumaticICE.docx(25页珍藏版)》请在冰点文库上搜索。

HybridpneumaticICE.docx

HybridpneumaticICE

TypePaperNumberHere

OneDimensionalModelingandExperimentalValidationofSingleCylinderPneumaticCombustionHybridEngine

PascalBREJAUD,PascalHIGELIN,AlainCHARLET,YannCHAMAILLARD(DoNOTenterthisinformation.ItwillbepulledfromparticipanttabinMyTechZone)

Affiliation(DoNOTenterthisinformation.ItwillbepulledfromparticipanttabinMyTechZone)

Copyright©2011SAEInternational

ABSTRACT

Theobjectiveofthispaperistopresentandtovalidateanumericalmodelofasingle-cylinderpneumatic-combustionhybridengine.Themodelpresentedinthispapercontains0-Dsub-modelsfornon-spatiallydistributedcomponents:

Enginecylinder,Airtank,wallheatlosses.1-Dsub-modelsforspatiallydistributedcomponentsareappliedonthecompressivegasflowsinpipes(intake,exhaustandcharging).Eachpipeisdiscretized,usingtheTwo-StepsLax-Wendroffscheme(LW2)includingDavisT.V.D.TheboundariesconditionsusedatpipeendsareMethodOfCharacteristics(MOC)based.Inthespecificcaseofavalve,anoriginalintermediatevolumeMOCbasedboundaryconditionisused.Thenumericalresultsprovidedbytheenginemodelarecomparedwiththeexperimentaldataobtainedfromasinglecylinderprototypehybridengineonatestbenchoperatingin4-strokepneumaticpumpand4strokepneumaticmotormodes.Ineachmode,thepredictionofthemassflowrates,amplitudeandtimingofthechargingpipewavesaresatisfactory,withoutusinganydischargecoefficient.Indicatedworkandp-Vdiagramsaresimilarbetweensimulationandmeasurementsinthecaseofpneumaticpumpmode.Forthepneumaticmotormodethemodelunderestimatescylinderpressureduringthechargingprocess.

INTRODUCTION

Figure1:

SchematicrepresentationofaSingleCylinder

Theconceptofthepneumatichybridengine

(1)

(2)isbasedonaconventionalinternalcombustionengineinwhichoneadditionalvalve,calledthechargingvalve,connectsthecombustionchambertoanairtank.SeeFigure1.Inordertoreducecosts,theintakeandexhaustvalveremaincamshaft-drivenandonlythechargingvalveismovedbyafullyvariableactuator(3).Asaresult,thenewmajormodesallowedbythisadditionalvalve(pneumaticpump,pneumaticmotorandsupercharged)remains4-Strokescycles:

∙PneumaticPump:

Thismodetransformsvehiclekineticenergyintoare-usablepneumaticenergy.Thecyclebeginswithaconventionalintakestroke.Thechargingvalveopensduringcompressionstrokesassoonasthein-cylinderpressurereachesthatofthechargingport.ThevalveclosesshortlyafterT.D.C,andthecyclefinisheswithconventionalexpansionandexhauststrokes.

∙PneumaticMotor:

Thismodeisusedtotransformpneumaticenergyintomechanicalworkwithoutanycombustion.Thecyclebeginswithclassicalintakeandcompressionstrokes.ThechargingvalveopenswhenapproachingTDC,andremainsopenduringpartoftheexpansionstrokeinordertomaintainpressureatahighlevelandgeneratethedesiredindicatedwork.Thecyclefinisheswithaconventionalexhauststroke.

∙PneumaticSuperchargedmode:

Thismodeisusedtocompensateforthe"turbolag"effect,whiletemporarilyboosttheengineduringastrongaccelerationtransient.Thechargingvalveopensshortlyafterintakevalveclosure,andcloseswhenthedesiredadditionalairmasshasflowedintothein-cylinder.Theendofthecycleremainsthesameasaconventionalfourstrokeone.

Severalpreviouspublications(4)(5)(6)haveshownthattheconceptofapneumatic-combustionhybridenginecouldprovidebenefitsintermsoffuelconsumptionandgreenhousegasemissionsthatarecomparablewiththoseofanelectrichybridvehicle(7)butwithlowerweightandpresumablylowercost(6).Toimprovetheperformanceandefficiencyofthehybridpneumaticconcept,thedevelopmentmainlyconsistsindeterminingthetimingofopeningandclosingofthechargingvalve,foragivenoperatingmode(pneumaticmotormode,pneumaticpumpmode,superchargedmode)andforagivenobjective(maximizationornominalcontrolofmechanicalwork,maximizationornominalcontrolofmassorenthalpytransferred,maximizationofglobalefficiencyetc.).Ithasbeenexperimentallyshown(8)thatlargeamplitudepressurewaves(near2barsofamplitude)arecreatedinsidethechargingpipeasaresultofthechargingvalveopeningandclosure.Inordertotakethispressurewavephenomenonintoaccounta1Dsimulationplatformisneeded.

However,thewayinwhichgastransferbetweenthecylinderandtheAirtankisperformeddependsonmanyparameters,suchas:

chargingpipelengthandcrosssection,airtankmeanpressure,airtanktemperature,chargingvalvehydraulicdiameterandnumber,chargingpiperoughness,chargingvalvelift.Thelargenumberofparameterstobeexploredforeachoperatingmodeandeachobjectivemakesoptimizationalmostimpossibletoperformexperimentally.Areliable,flexible,andfastnumerical1Dmodelisthereforeneededinordertodevelopcontrollaws.Twopreviousstudies(9)(10)haveuseda1-Dcommercialsimulationsoftwareforenginesimulations,butdonotpresentanycomparisonbetweenexperimentalandsimulatedresultsforwavetimingsandamplitude,massflowratesetc.Fromourpointofview,theuseofsuchcommercialcodeforapneumatichybridengineposesoneproblemandleavesonequestionunanswered.Theproblemisthatthesoftwarerequiresapreciseknowledgeofthedischargecoefficientversusliftofeachsimulatedvalve(11).Thesecoefficientarrayshavetobedeterminedbyexperimentsthusaprototypecylinderheadisrequired.Anestimateddischargecoefficientwillthereforebemoreorlesserroneous,leadingtoseriousdiscrepanciesbetweensimulationsandfuturemeasurements.Theunansweredquestionisthatthevalveboundaryconditionimplementedinthiskindofsoftwareisseldomvalidatedonpressureratiosashighasthoseencounteredinapneumatichybridengine(upto22).Tocircumventthepreviouspoints,authorshavedevelopedtheirownMOCvalveboundaryconditionthatobviatesinmanycasestheuseofaCoefficientofdischargeandhasbeenexperimentallyvalidatedonavalvegasdynamicstestbench(12).Theobjectiveofthepaperisnowtopresentthecompleteenginemodelthatembedsthisvalveboundarycondition,andtocompareexperimentsversussimulations.

Thepaperisorganizedasfollows:

Firstly,0Dcomponentsmodelsaredescribed:

thecylinderandtheairtankmodel.Secondly,the1Dsubmodelsforspatiallydistributedcomponentsaredescribed:

theLW2numericalschemeandthesimplifiedTVDschemeproposedbyDavisarepresented,followedbytheIntermediateVolumeValveboundarycondition.Thirdlytheresultsproducedbythecompletesinglecylinderhybridenginearepresentedandcomparedtomeasurementsobtainedwithaprototypeengine.

Quasi-dimensionalcomponentsoftheenginemodel

Airtank:

TheairtankthermodynamicstateshownonFigure1isdeterminedusingthefirstlawofthermodynamics:

Becausethetankhasaconstantvolume,

.AccordingtoJoule'slaw

with

thetemperatureofthegasescontainedintheTank.Theairtankisassumedtobeadiabatic,then

.Foraperfectgas,thespecificenthalpyisgivenby

with

thetemperatureoftheflowinggases.Finally,are-arrangementofEq.

(1)gives:

Theairflowmass

isdeterminedattheopenendboundary(seecorrespondingsectionofthispaper)usingthemethodofcharacteristics(M.O.C).Aclassicalnumericalintegrationthenprovidesthetotalairmassinsidethetank.UsingEq.

(2),theelementarytemperatureriseinthetankisdetermined.Applyinganumericalintegration,thenewtanktemperatureiscomputed.Finally,usingtheperfectgaslaw(pV=mrT),themeantankpressureisdetermined.

Enginecylinder

Thecylinderisthecentralpartofthesystem.Itexchangesheatandmasswiththeoutside.Itsthermodynamicstateisdeterminedusingthefirstlawofthermodynamics(Eq

(1)).

Wisthemechanicalworkgeneratedbythemovingwalls,Qisthetotalheat,mthemassandHistheenthalpy.Subscriptiindicatesanintakeflow,cindicatesachargingpipeflowandeindicatesanexhaustflow.Then:

Eachmassflowrateisdeterminedusingavalveboundarycondition(Seecorrespondingsectionofthispaper).Aclassicalnumericalintegrationtechniquethenyieldsthenewtotalmassinsidethecylinder.

Thetotalheat

isthesumofacombustionheat

andconvectiveheattransferthroughcylinderswalls

.

and

arerespectivelydeterminedusingtheWoshni(13)andWiebe(14)models.Theseclassicalcorrelationsarenotdetailedinthispaper.Re-arrangingEq

(1)finallygives:

Anumericalintegrationgivesthenewtemperatureofthecylinder.Thevolumeisdeterminedfromtheenginegeometryandcrankshaftposition(15).Thepressureisthencalculatedusingidealgaslaw.

One-dimensionalcomponentsoftheenginemodel

Fundamentals

Figure2:

ControlVolume

Flows,ineachpipe,areassumedtobemonodimensional.Theidealcompressivegasisassumedtobeinviscid.Threeconservationlawsarewrittenforacontrolvolume,respectivelythemass,momentumandenergy.Figure2showstheflowofanidealcompressiblegasthroughaninfinitesimalsectionofpipe.

and

arerespectivelythepressure,thedensity,thevelocity,thetime,thespaceandthecrosssectionarea.

Continuityequation:

Therateofchangeofmasswithinthecontrolvolumeisequaltonetmassflowratethroughtheelement.Thisprincipleleadsto(16)(17):

Momentumequation:

Therateofchangeofmomentumwithinthecontrolvolumeisequaltothesumoftheforcesappliedonthecontrolvolume.Inordertomodelthefrictionbetweentheflowandthewa

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 军事政治

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2