汽车磁流变半主动悬架的结构设计与实验方案分析.docx

上传人:b****4 文档编号:11410868 上传时间:2023-05-31 格式:DOCX 页数:7 大小:20.92KB
下载 相关 举报
汽车磁流变半主动悬架的结构设计与实验方案分析.docx_第1页
第1页 / 共7页
汽车磁流变半主动悬架的结构设计与实验方案分析.docx_第2页
第2页 / 共7页
汽车磁流变半主动悬架的结构设计与实验方案分析.docx_第3页
第3页 / 共7页
汽车磁流变半主动悬架的结构设计与实验方案分析.docx_第4页
第4页 / 共7页
汽车磁流变半主动悬架的结构设计与实验方案分析.docx_第5页
第5页 / 共7页
汽车磁流变半主动悬架的结构设计与实验方案分析.docx_第6页
第6页 / 共7页
汽车磁流变半主动悬架的结构设计与实验方案分析.docx_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

汽车磁流变半主动悬架的结构设计与实验方案分析.docx

《汽车磁流变半主动悬架的结构设计与实验方案分析.docx》由会员分享,可在线阅读,更多相关《汽车磁流变半主动悬架的结构设计与实验方案分析.docx(7页珍藏版)》请在冰点文库上搜索。

汽车磁流变半主动悬架的结构设计与实验方案分析.docx

汽车磁流变半主动悬架的结构设计与实验方案分析

汽车磁流变半主动悬架的结构设计与实验方案分析

相关主题概念:

1.磁流变液相关知识

磁流变液定义

磁流变液(MagnetorheologicalFluid,简称MR流体)属可控流体,是智能材料中研究较为活跃的一支。

磁流变液是由高磁导率、低磁滞性的微小软磁性颗粒和非导磁性液体混合而成的悬浮体。

这种悬浮体在零磁场条件下呈现出低粘度的牛顿流体特性;而在强磁场作用下,则呈现出高粘度、低流动性的Bingham体特性。

由于磁流变液在磁场作用下的流变是瞬间的、可逆的、而且其流变后的剪切屈服强度与磁场强度具有稳定的对应关系,因此是一种用途广泛、性能优良的智能材料。

磁流变液应用范围

目前,磁流变液已经开始应用于研磨(抛光)工艺、阀门和密封、家庭健身器、机械手的抓持机构、装配车间不规则形体的依托架、以及自动化仪表、机器人的传感器和采矿、印刷等行业。

在其众多应用领域当中,研究最多、发展最快的应用领域是汽车座位减振器、刹车器、主动驱动器以及土模机构减振器。

磁流变液应满足的指标

(1)零磁场粘度低,以便使其在磁场作用下,具有同等剪切屈服强度增长时,具有更大的可调范围。

(2)强磁场下剪切屈服强度高,至少应达到20~30Kpa,这是衡量磁流变液特性的主要指标之一。

(3)杂质干扰小,以增加其使用范围。

(4)温度使用范围宽,即在相当宽的温度范围具有极高的稳定性。

(5)响应速度快,最好能达到毫秒级,以使磁流变液减振器作为主动和半主动控制器时,基本不存在时迟问题。

(6)抗沉降性好,长时间存放应基本不分层。

(7)能耗低,在较弱的磁场下可产生较大的剪切屈服强度。

(8)无毒、不挥发、无异味,这是由其应用领域所决定的。

磁流变液减振器的特点

(1)磁流变液减振器精确的实时控制

(2)连续可逆变化的阻尼力

(3)低电压低功耗

(4)工业级的稳定性和耐久性

(5)简洁的机电结构

(6)使用寿命长

2.半主动悬架

半主动悬架系统具有控制车身振动和车身高度的功能,主要能增进汽车操作稳定性、乘坐舒适性等性能。

由美国人Crosby和Karnopp等人于70年代提出来的,其应用始于80年代初期,因为改变减振器阻尼特性较改变弹簧刚度更容易,所以半主动悬架主要由不可变刚度的弹簧和可变阻尼减振器组成,因仅需要很少量的能量输入也被称为无源主动悬挂,虽然不能随外界的输入进行最优控制,但它可以按照存储在电脑中的各工况下悬挂优化参数指令来调节阻尼大小。

它的性能介于被动悬架与主动悬架之间。

目前,主流的半主动悬架不考虑改变悬架的刚度,而只考虑改变悬架的阻尼,因此它无动力源且只由可控的阻尼元件组成。

由于半主动悬架结构简单,工作时几乎不消耗车辆动力,而且还能获得与全主动悬架相近的性能,故有较好的应用前景。

半主动悬架分类:

(1)有级式半主动悬架它是将悬架系统中的阻尼分为两级、三级或更多级,可由驾驶员选择或根据传感器信号自动进行选择悬架所需要的阻尼级。

也就是说,可以根据路面条件(好路或坏路)和汽车的行驶状态(转弯或制动)等来调节悬架的阻尼级,使悬架适应外界环境的变化,从而可以较大幅度地提高汽车的行驶平顺性和操纵稳定性。

半主动悬架中的三级阻尼可调减振器的旁路控制阀是由调节电动机来带动阀芯转动,使控制阀孔具有关闭,小开和大开3个位置,产生3个阻尼值。

该减振器应用于OPELSENTOR和OPELGA轿车上。

(2)无级式半主动悬架它是根据汽车行驶的路面条件和行驶状态,对悬架系统的阻尼在几毫秒内有最小变到最大进行无级调节。

无级半主动微处理器从速度、位移、加速度等传感器处接受到信号,计算机出系统相适应的阻尼值,并发出控制指令给步进电动机,经阀杆调节阀门,使其改变节流孔的通道节面积,从而改变系统的阻尼。

该系统虽然不必外加能源装置,但所需传感器较多,故成本仍较高。

新型的半主动悬架系统

前人基于天棚阻尼的概念发明了半主动阻尼器,并应用于生产,但对悬架性能的改善是极其有限的。

后来,有人提出了开关控制的半主动悬架,它能产生较大的阻尼力,这种悬架已应用到实车上,其后又有人在半主动悬架控制中引入了此方法,并改进了控制算法的稳定性。

日产公司研制了一种声纳式半主动悬架,它可通过声纳装置预测路面信息,悬架减振器有柔和、适中和稳定3种选择状况。

随后有研究人员利用了电流变和磁流体作为工作介质,研究了新型的半主动悬架系统。

半主动悬架系统除了少量的开启电液阀的能量以外,几乎不需要外加能源,研究表明,只要恰当选择控制逻辑,半主动阻尼器可以达到像主动减振器一样的减振效果。

通常,半主动悬架是指悬架弹性元件的刚度和减振器的阻尼系数之一可以根据需要进行调节的悬架。

目前,半主动悬架研究主要集中在调节减振器的阻尼系数方面,即将阻尼可调减振器作为执行机构,通过传感器检测到汽车行驶状况和道路条件的变化以及车身的加速度,由ECU根据控制策略发出脉冲控制信号实现对减振器阻尼系数的有级可调和无级可调。

磁流变液一般由铁磁性易磁化颗粒、母液油和稳定剂三种物质构成。

铁磁性(软磁性)固体颗粒有球状、棒状和纺锤状三种形态,密度为7~8g/cm3,其中球形颗粒的直径在0.1~500μm[10]范围内。

目前可用作磁流变液的铁磁性固体颗粒是具有较高磁化饱和强度的羰基铁粉、纯铁粉或铁合金。

由于羰基铁粉饱和磁化强度为2.15特斯拉,且物性较软、具有可压缩性、材料成本低、购买方便,已成为最常用的材料之一。

磁流变液的母液油(分散剂)一般是非导磁且性能良好的油,如矿物油、硅油、合成油等,它们须具有较低的零场粘度、较大范围的温度稳定性、不污染环境等特性。

稳定剂用来减缓或防止磁性颗粒沉降的产生。

因为磁性颗粒的比重较大,容易沉淀或离心分离,加入少量的稳定剂是必须的。

磁流变液的稳定性主要受两种因素的影响:

一是粒子的聚集结块,即粒子相互聚集形成很大的团;二是粒子本身的沉降,即磁性粒子随时间的沉淀。

这两种因素都可以通过添加剂或表面活性剂来减缓。

由超精细石英粉形成的硅胶是一种典型的稳定剂,这种粒子具有很大的表面积,每个粒子具有多孔疏松结构可以吸附大量的潮气,磁性颗粒可由这些结构支撑均匀地分布在母液中。

另一方面,表面活性剂可以形成网状结构吸附在磁性颗粒的周围以减缓粒子的沉降。

稳定剂必须有特殊的分子结构,一端有一个对磁性颗粒界面产生高度亲和力的钉扎功能团,另一端还需一个极易分散于某种基液中去的适当长度的弹性基团。

  将这三种物质按一定的比例混合均匀,即可形成磁流变液。

良好的磁流变液必须具有下列性能:

(1)具有优良的磁化和退磁特性,以保证磁流变液的磁流变效应是一种可逆变化。

因此这种流体的磁滞回线必须狭窄,内聚力较小,而磁导率很大,尤其是磁导率的初始值和极大值必须很大;

(2)应具有较大的磁饱和特性,以便使得尽可能大的“磁流”通过悬浮液的横截面,从而给颗粒相互间提供尽可能大的能量;(3)应具有较小的能量损耗,在工作期间,全部损耗(如磁滞现象、涡流现象等)都应该是一个很小的量;(4)应具有高度磁化和稳定的性能,这就要求磁流变液中的强磁性粒子的分布必须均匀,而且分布率保持不变;(5)应具备极高的“击穿磁场”,以防止磁流变液被磨损并改变性能;(6)应在相当宽的温度范围内具有极高的稳定性,以保证磁流变液的流变性能不会在正常工作温度范围内发生改变;(7)构成磁流变液的原材料应是价廉的而不是稀有的。

  目前国际上关于磁流变液材料制备方法和工艺的报道比较多。

中国科技大学磁流变研究组陈祖耀、江万权等人用Y-辐射技术产生直径在200nm~5μm的Co粒子,并将铁颗粒表面复合此纳米尺寸的Co粒子,形成铁复合物为悬浮粒子制备的磁流变液。

在中国科技大学的旋转式磁流变液测试系统上测试,结果表明剪切屈服应力显着增大;用直径为2.5μm~8μm羰基铁粉分散于硅油中,并用偶联剂预先处理,改善液态相和固态相的相容性,可有效防止粒子沉淀,该磁流变液效应显着,且具有较大的温度稳定性。

2002年,中国科学技术大学磁流变研究组成功地筛选制备了KDC—1磁流变液,该样品实验室工艺稳定,有较大的剪切屈服强度和沉降稳定性,其主要力学性能指标与美国Lord公司产品接近。

现已完成对3家友邻研究单位KDC—1MRF小批量实验室规模供给,反映良好。

磁流变液的流变机理 

 按照磁畴理论可以解释磁流变效应。

在磁流变液中,每一个小颗粒都可当做一个小的磁体。

在这种磁体中,相邻原子间存在着强交换耦合作用。

它促使相邻原子的磁矩平行排列,形成自发磁化饱和区域即磁畴。

无外磁场作用时,每个磁畴中各个原子的磁矩排列取向一致,而不同磁畴磁矩取向不同。

磁畴的这种排列方式使每一颗粒处于能量最小的稳定状态。

因此,所有颗粒平均磁矩为零,颗粒不显磁性。

在外磁场作用下,磁矩与外磁场同方向排列时的磁能低于磁矩与外磁场反方向排列时的磁能,结果是同自发磁化磁矩成较大角度的磁畴体积逐渐缩小。

这时颗粒的平均磁矩不等于零,颗粒对外显示磁性,按序排列相接成链。

当外磁场强度较弱时,链数量少、长度短、直径也较细,剪断它们所需外力也较小。

随外磁场不断增强,取向与外场成较大角度的磁畴全部消失,留存的磁畴开始向外磁场方向旋转,磁流变液中链的数量增加,长度加长,直径变粗,磁流变液对外所表现的剪切应力增强;再继续增加磁场,所有磁畴沿外磁场方向整齐排列,磁化达到饱和,磁流变液的剪切应力也达到最高。

  磁流变液的磁化特征不仅依赖固态相本身的磁特性,而且与颗粒间聚集状态和结构特征密切相关。

另外,磁流变液的磁化饱和强度与体积分数无关,但磁化率却随体积分数的增加而线形增加,且有随颗粒直径增大而增大的趋势。

在外加磁场作用下,磁流变液发生相变的三个临界磁场分别为Hc1、Hc2和Hc3,如图1。

  图a:

当H

当Hc1

当Hc2

当H>Hc3时,颗粒全部形成柱状结构。

磁流变液的流变机理

磁流变液的应用  

磁流变液在外加磁场增强的过程中,液体的粘度随之增大并最终失去流动性变为固态,此过程耗能小、可逆、能产生较大屈服应力且在豪秒级内完成。

利用此一系列性能,在充分考虑磁场、温度、颗粒尺寸、壁面效应和体积浓度等诸因素对应用器件影响的基础上,可以设计开发各种磁流变阻尼器件,主要有以下几类。

  

(1)阻尼元件此类装置是磁流变液的最典型应用,由于能产生强大的阻尼力,且阻尼器可根据外部的振动不同自行调节磁场强度大小,来改变振动系统的阻尼和刚度,达到主动减振的目的。

根据阻尼器尺寸和使用环境不同,可以研制出机械上用各类阻尼器和阻尼力可高达20吨力的建筑物减振器。

  

(2)控制元件由于磁流变液相变的过程在毫秒量级内完成,因此可以做成敏捷度极高的控制元件,用于联接和传递两部件之间的力或力矩。

如汽车用离合器、制动器等。

  (3)研磨和密封在光学镜头的加工中,加工精度是制约镜头质量的关键因素和技术,因此提高加工精度对镜头的最后形成和微表面粗糙度有着非常重要的意义。

如图9所示,采用磁流变液进行精加工,试件被固定在移动壁的某一位置,在工作表面和移动面之间的间隙内盛放磁流变液,线圈置于移动壁下方。

在间隙处产生可控磁场,磁流变液随外加磁场的增强而固化,并随移动壁获得速度,此间隙处被称为抛光点,其过程由计算机精确控制,可完成复杂表面形状抛光和高表面光洁度。

磁流变液的研究方向  

磁流变液及其器件在机械、交通、舰船、航天、车辆、建筑等军用和民用领域具有广泛的应用前景,展望未来,其研究工作主要有以下几个方面。

  1)新型MRF材料研究。

磁流变液材料在近10年取得了重大进展,已有商业化的产品出现。

由于高新技术的飞速发展,传统的MRF材料不能完全满足工程领域的技术要求。

例如:

适用于高温、低温环境下的专用磁流变材料,在高频、高速振动环境下的特殊磁流变材料等。

这就要求新型MRF材料向多功能化、高性能化的方向发展。

  2)新型MRF减振器研究。

新型减振器要求在多种工况条件下,保持较高的阻尼动态变化范围,且变阻尼迟滞时间要尽可能短。

为配合振动控制策略所需的振动状态参数监测与获取,采用BIT设计将加速度、阻尼力、温度等传感器嵌入磁流变减振器之中,这样可以大大降低磁流变减振器工程应用的难度,对推动工程应用意义重大。

  3)基于磁流变阻尼的半主动振动控制算法研究。

前述控制算法在应用于磁流变阻尼半主动振动控制悬挂系统中取得了较好的效果,但是由于这些控制策略多数来源于经典控制理论,对磁流变阻尼振动控制存在“水土不服”的问题,因此如何根据磁流变阻尼特有的性质与特点对振动控制策略进行创新研究将成为很有发展前途的研究方向。

 

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中教育 > 英语

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2