外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx

上传人:b****6 文档编号:11986352 上传时间:2023-06-03 格式:DOCX 页数:34 大小:256.69KB
下载 相关 举报
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第1页
第1页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第2页
第2页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第3页
第3页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第4页
第4页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第5页
第5页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第6页
第6页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第7页
第7页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第8页
第8页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第9页
第9页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第10页
第10页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第11页
第11页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第12页
第12页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第13页
第13页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第14页
第14页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第15页
第15页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第16页
第16页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第17页
第17页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第18页
第18页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第19页
第19页 / 共34页
外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx_第20页
第20页 / 共34页
亲,该文档总共34页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx

《外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx》由会员分享,可在线阅读,更多相关《外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx(34页珍藏版)》请在冰点文库上搜索。

外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计.docx

外文翻译数字模拟冲击试验机的多液压缸电动液压的系统和控制器设计

附录

英文原文

NUMERICALMODELINGOFMULTICYLINDERELECTRO-HYDRAULICSYSTEMANDCONTROLLERDESIGNFORSHOCKTESTMACHINE

 

Abstract:

Ahighfidelitydynamicmodelofahigh-energyhydraulically-actuatedshocktestmachineforheavyweightdevicesispresentedtosatisfythenewly-builtshockresistancestandardandsimulatetheactua1underwaterexplosionenvironmentsinlaboratoryaswel1asincreasethetestingcapabilityofshocktestmachine.Inordertoproducetherequirednegativeshockpulseinthegiventimeduration.fourhydraulicactuatorsareutilized.Themodelisthenusedtoformulateanadvancedfeedforwardcontrollerforthesystemtoproducetherequirednegativewaveformandtoaddressthemotionsynchronizationofthefourcylinders.Themode1providesasafeandeasilycontrollablewaytoperforma“virtua1testing”beforestartingpotentiallydestructivetestsonspecimenandtopredictperformanceofthesystem.Simulationresultshavedemonstratedtheeffectivenessofthecontroller.

Keywords:

ShocktestmachineNegativeshockpulseActuatorredundancyFeedforwardcontrollerVirtua1testing

0INTRODUCTION

Theeffectsofunderwaterexplosions(UNDEX)onshiphullsandequipmenthavebeenstudiedsincethel800sLU.Non-contactunderwaterexplosionsagainstsurfaceships,i.e.bymines,ormissilesmaycauseextensiveequipmentdamageandrendershipsinoperativeeventhoughhulldamageisnotcritica1.Thusshocktestmustbecarriedoutoneverycriticaldeviceorequipmentonsubmarineandsurfaceshiptoconfirmthatitwillstillfunction.orinsevercaseswillsurvive,aftertheoccurrenceoftheshockconditionswhichitcanbeexpectedtoencounterduringitsservice.Themosteffectiveanddirectwaytocheckouttheanti—shockcapabilityofdevicesistotestthemonavesselsubjectedtounderwaterexplosion.Testsconductedusingliveexplosiveshaveinherentlimitationsincludingenvironmentalimpact,significantcost,measuringresultsinthefieldandavailablequantityoftests.Atpresent,thecommonlyusedmethodtoassesswarshipequipment’sshockresistancecapabilityistoconducttestonashocktestmachineinacontrollableway.

TheUNDEXenvironmentisverycomplex.composedofa“kick”fromtheincidentshockwavefollowedbytheeffectsofcavitations,bubblepulse,andstructuralwhipping.Thebubblepulseoscillatesatafrequencyveryclosetothefirstbendingmodeoftheship.ItwillbeevenmoredestructivethantheincidentpressurewavewhenthebubblemigratesnearenoughtotheshiptoexcitethismodeHowever,thetraditionalshockmachines.1ikelightweightshockmachine(LWSM)andmediumweightshockmachine(MWSM),cannotsimulateshockenvironmentforthebubblepulsesinducedbyUNDEX.andtheshockenvironmentsimulatedbytraditionalmachinesislargelydifferentfromtheactualUNDEXphysicalenvironment.AccordingtothenewlydesignspecificationsOfMIL.S.90lD.theinputforshocktestshouldbeshockresponsespectra(SRS1,insteadofasingletime.history.accelerationwaveformsuchashalf-sine.triangularsawtoothpulse.Besides.theshockinputinthedesignspecificationsOfBV043/85isadoubletransientshockpulse.i.e.apositiveaccelerationpulseanegativeone.IntheorytheSRScanbetransformedintotimedomainanditisequivalenttoadouble.waveforil1.Therefore.shockmachinesthatwillbebuiltshouldadapttotherequirementofthelatestshockcriteriontosimulatetheactualUNDEXenvironmentasmuchaspossible.

Theaimofshocktestingistoimpartprecisereplicationsofhigh.energytransientshockpulseintotestspecimens.Thetestspecimensarevaluableandunique,andneedtobetestedtoexactshocklevelswithspecificenterspectra:

toomuchcandamagethespecimen,toolittleleavesquestionsaboutthespecimenrobustness.Owingtothetestseverity,itisthenessentialthatthetestshouldbecontrollable.Classiccontrolmethods,suchaspoleplacement.havebeeninvestigatedforshockcontrol,butwithlimitedsuccess.Themainreasonisthatthedurationofshocktestisveryshort.bythetimethesystemcandetectanerrorbetweencommandsandtheactualoutputs.itisalreadytoolatetorespondadequately.

Thispaperformulatesahighfidelitynumericaldynamicmodelforadampingsystem.whichisapartofthewholeshockmachineusedtoproducetherequirednegativeshockpulseinthetestingprocess.Componentsofthesystemmodelareusedtoformelateanadvancedfeedforwardcontroller.Theactuatorredundancyissueisalsoconsideredduringthecontrollerdesign.Themodelandcontrollerprovideasafeandeasilycontrollablewaytoperforma’virtualtesting”beforestartingpotentiallydestructivetestsonthespecimenandtopredicttheperformanceofthesystem.Furtherore.inordertosolvetheuncertaintyproblemofthetestspecimendynamicsforfeedforwardinversemodelcontrol,anewinitialtuningtechniqueisproposedforourspecialcases.

Theorganizationofthispa1)erisasfollows:

Insectionl,adescriptionofthedampingsystemanditsdynamicmodelispresented.Variousfeaturesofthemodelarediscussed,includingthesettlementofactuatorsredundant.Insection2.thecontrolstrategiesareproposed.Thesimulationresultsarepresentedinsection3.Finally,theconclusionsectionfollows.

1PROBLEMFORMULATIONANDDYNAMICMODEL

ThestructureofthedampingsystemisshowninFig.1anditsfunctionistoproducetherequirednegativeshockpulseduringshocktestingprocess.Thedurationoftheshockwavetransientsisunder0.1s.withdesiredaccelerationsupto25~50gformegiventestspecimenalltheseparameterscanbeadjustedaccordingtodifferenttestingconditions.Thetestingcapacityofmeshockmachineisunder5000kg(includingfixture).Thetestspecimenisfixedonmeteststandmovingverticallyatmegivenspeed,whichisproducedbytheshocksysteminmepositiveshockpulsegeneratingprocess.Whenthemaximumspeedisachieved,the

dampingsystembeginstoforceittostopinthegiventime

Themaindifficultyindesigningthedampingsystemliesinthatthesystemshouldproducetherequiredforcesinthegiventimetosaristhewaveformrequirement.Forthispurpose,fourcomplexandsophisticatedhydraulicactuatorsaredesignedtoexertthedampingforces.Theactuatorsareconnectedwiththeteststandthroughsphericalhingesandthefourram-typecylindersarearrangedinasymmetricalmanner.DetailsofthecontactingpointsbetweenteststandandcylinderscanbeseeninFig.2.Thepointsontheteststandthatcontactthecylindersvarywiththerotationoftheteststand.Itsmotiondependsontherotationangleand.Inrealitytherotationangleisverysmall,thismotioncanbeignoredandwejustfocusontheverticaldisplace.MendandtherotationalongtherollaxisrandthepitchaxisP.Eachcylinderiscontrolledbyfourthree.stageservovalves.Thehightransientenergyissuppliedbyaseriesofaccumulators(seeFig.3)

1.1Systemmodeling

Inwhatfollowing.mathematicalmodelofthecomponentsinthenegativepulsesystemwillbebuiltindetail.

1.1.1Testspecimen

Fig.1showstheforcesactingonthehydrauliccylindersandFig.4isthetopviewofthesystemtoindicatethelocationofthespecimen.Sphericalcontactsurfacesareassumedbetweenthecylindersandtheteststand.Theteststand(includingtestspecimen)canrotatefreelyaroundtherollaxisrandthepitchaxisP.Therol1axisrisdefinedtobeperpendiculartothe1ineconnectingcylinder1andcylinder2andthepitchaxisPisdefinedtobeparalleltothelineconnectingcylinder1andcylinder2.AccordingtoNewton’ssecondlawandthetheoremofangularmomenturn,thefollowingequationscanbeobtainedtorepresentthemotionofthespecimen.

wherem:

ms+mt,msandmtrepresentmassofthetestspecimenandtheteststand,respectively.representsthereactionforceactingoncylinder(i=1,2,3,4);gisthegravitationalconstant;Iiand12arethemomentam1forwithrespecttotherotationalaxisrandP;jandJvrepresenttherotationalmomentofinertiaoftheloadabouttheaxisrandaxisp;8rand8,aretherotationangleabouttheaxisrandaxispFIandFIrepresentthefrictionforcebetweentheteststandandcylindersalongthedirectionoftheaxis,andaxisp;aandbrepresentoff-centerdistancesofthespecimenwithrespecttotheteststandcenterO1;02isthegravitycenterofthetestspecimen.

1.1.2Hydrauliccylinders

ConsidertheforcesFA(1,2,3,4)actingonthecylinders,theequationsofmotionforthecylinderscanbeexpressedasfollows

wherepirepresentsthepressureinthechamberofcylinderIand4representstheeffectivepistonarea;mrepresentsthepistonmassofcylinder.Firepresentsthefrictionforce;lrepresentstheviscousdampingcoefficient.

Thecontactingeffectbetweentheteststandardthecylindercanbeassumedtobeequivalenttoamassspring-dampersystemwithstiffnessanddampingratio,andthenthecontactingeffectcanbemodeledbythefollowingequation

whererepresentstherelativedisplacementofthecontactpointbetweentheteststandandthecylinders.

1.1.3Cylinderpressure

Thepressureineachcylinderiscontrolledbyservovalves.Considerthecompressibilityofthefluidinthecylindersaswellastheleakages,thepressuredifferentialequationsgoverningthedynamicsoftheactuatorcanbeexpressedasfollows

where(x)=a+v,and(x)representsthetotalactuatorvolumeandisdefinedtobethefluidvolumeeofthehosesfromthevalveprostatecylinderi.frepresentstheloadflowofcylinderi.representsspoolvalveareagradient.Krepresentstheeffectivebulkmodulus.Cmrepresentsthecoefficientofleakage.Cdrepresentsdischargecoefficient.Psrepresentsthes

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2