十二篇可控硅交流调压电路解析.docx

上传人:b****6 文档编号:12274581 上传时间:2023-06-05 格式:DOCX 页数:10 大小:371.25KB
下载 相关 举报
十二篇可控硅交流调压电路解析.docx_第1页
第1页 / 共10页
十二篇可控硅交流调压电路解析.docx_第2页
第2页 / 共10页
十二篇可控硅交流调压电路解析.docx_第3页
第3页 / 共10页
十二篇可控硅交流调压电路解析.docx_第4页
第4页 / 共10页
十二篇可控硅交流调压电路解析.docx_第5页
第5页 / 共10页
十二篇可控硅交流调压电路解析.docx_第6页
第6页 / 共10页
十二篇可控硅交流调压电路解析.docx_第7页
第7页 / 共10页
十二篇可控硅交流调压电路解析.docx_第8页
第8页 / 共10页
十二篇可控硅交流调压电路解析.docx_第9页
第9页 / 共10页
十二篇可控硅交流调压电路解析.docx_第10页
第10页 / 共10页
亲,该文档总共10页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

十二篇可控硅交流调压电路解析.docx

《十二篇可控硅交流调压电路解析.docx》由会员分享,可在线阅读,更多相关《十二篇可控硅交流调压电路解析.docx(10页珍藏版)》请在冰点文库上搜索。

十二篇可控硅交流调压电路解析.docx

十二篇可控硅交流调压电路解析

第一篇:

可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,目前交流调压器多采用可控硅调压器。

这里介绍一台电路简单、装置容易、控制方便的可控硅交流调压器,这可用作家用电器的调压装置,进行照明灯调光,电风扇调速、电熨斗调温等控制。

这台调压器的输出功率达100W,一般家用电器都能使用。

1:

电路原理:

电路图如下

可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。

从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。

当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。

在交流电的正半周时,整流电压通过R4、W1对电容C充电。

当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。

这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。

可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。

当交流电通过零点时,可控硅自关断。

当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。

2:

元器件选择

调压器的调节电位器选用阻值为470KΩ的WH114-1型合成碳膜电位器,这种电位器可以直接焊在电路板上,电阻除R1要用功率为1W的金属膜电阻外,其佘的都用功率为1/8W的碳膜电阻。

D1—D4选用反向击穿电压大于300V、最大整流电流大于0.3A的硅整流二极管,如2CZ21B、2CZ83E、2DP3B等。

SCR选用正向与反向电压大于300V、额定平均电流大于1A的可控硅整流器件,如国产3CT系例。

第二篇:

本例介绍的温度控制器,具有SB260取材方便、性能可靠等特点,可用于种子催芽、食用菌培养、幼畜饲养及禽蛋卵化等方面的温度控制,也可用于控制电热毯、小功率电暖器等家用电器。

1.电路图温度控制器电路如图7.116所示。

2.工作原理220V交流电压经Cl降压、VD,和VD。

整流、C2滤波及VS稳压后,一路作为IC(TL431型三端稳压集成电路)的输入直流电压;另一路经RT、R3和RP分压后,为IC提供控制电压。

在被测温度低于RP的设定温度时,NTC502型负温度系数热敏电阻器Rr的电阻值较大,IC的控制电压高于其开启电压,IC导通,使LED点亮,VS受触发而导通,电热器EH通电开始加热。

随着温度的不断上升,Rr的电阻值逐渐减小,同时IC的控制电压也随之下降。

当被测温度高于设定温度时,IC截止,使LED熄灭,VS关断,EH断电而停止加热。

随后温度又开始缓慢下降,当被测温度低于设定温度时,IC又导通,EH又开始通电加热。

如此循环不止,将被测温度控制在设定的范围内。

第三篇:

一般书刊介绍的大功率可控硅触发电路都比较复杂,而且有些元件难以购买。

笔者仅花几元钱制作的触发电路已成功触发100A以上的可控硅模块,用于工业淬火炉上调节380V电压,又装一套用于大功率鼓风机作无级调速用,效果非常好。

本电路也可用作调节220V交流供电的用电器。

电路见图。

将两只单向可控硅SCRl、SCR2反向并联.再将控制板与本触发电路连接,就组成了一个简单实用的大功率无级调速电路。

这个电路的独特之处在于可控硅控制极不需外加电源,只要将负载与本电路串联后接通电源,两个控制极与各自的阴极之间便有5V~8V脉动直流电压产生,调节电位器R2即可改变两只可控硅的导通角,增大R2的阻值到一定程度,便可使两个主可控硅阻断,因此R2还可起开关的作用。

该电路的另一个特点是两只主可控硅交替导通,一个的正向压降就是另一个的反向压降,因此不存在反向击穿问题。

但当外加电压瞬时超过阻断电压时,SCR1、SCR2会误导通,导通程度由电位器R2决定。

SCR3与周围元件构成普通移相触发电路,其原理这里从略。

SCR1、SCR2笔者选用的是封装好的可控硅模块(110A/1000V),SCR3选用BTl36,即600V的双向可控硅。

本电路如用于感性负载,应增加R4,C3阻容吸收电路及压敏电阻RV作过压保护,防止负载断开和接通瞬间产生很高的感应电压损坏可控硅。

第四篇:

简易可控硅调压调温电路

第五篇:

单向可控硅调压电路

第六篇:

过零触发双硅输出光耦MOC3061经典应用

第七篇:

一种吸尘器使用可控硅元件构成调速电路

第八篇:

这个电路的独特之处在于可控硅控制极不需外加电源

第九篇:

一种大功率直流电机调速电路

第十篇:

ZW100929型吸尘器电路及检修

这是苏州春花吸尘器总厂生产的一种卧式吸尘器,故障现象为加电无任何反应。

根据吏物绘制的控制电路原理图如附图所示,该机是由电源整流部分、四单元运算放大器GL324、光电耦合器、双向可控硅、电机以及外围元件组成。

可控硅调压调温,工作原理:

四运放中的三个运算放大器组成频率可调的间歇振荡器。

当接通电源开关K时,AC220V市电经变压器(B)降压得到交流12.5V电压,再经整流,一路经D1、c2得到+14V电压加至3DG6的集电极,并经R6加至其基极,使其发射极输出9V电压,为IC2(CL324)提供工作电压VCC。

通过调节电位器VR的阻值,可调节振荡频率,运算放大器Ic2⑦脚输出频率可调的正脉冲,加至光电耦合器IC1①脚,使之⑥脚输出控制脉冲来控制双向可控硅,从而改变双向可控硅的导通角,以达到吸尘器转速的无级调速。

转载请注明转自“维修吧”

检修:

1.加电后吸尘器无任何反应。

用万用表测量变压器B的次级有AC12.5V电压;再测3DG6集电极有+14V电压,说明电源的整流滤波部分完好。

而测Ic2GL324④脚无9V(VCC)电压,3DC6可能已损坏,用同型号三极管更换后该机上作正常,并可手动调节VR进行无级调速。

另外,如IC1、IC2或可控硅断路损坏都可造成加电无任何反应。

2.吸尘器加电后一直在高速运转状态,不能调速。

此种情况多为双向可控硅或Ic1④脚至⑥脚击穿短路所致。

第十一篇:

936型恒温电烙铁维修经验

936烙铁是一种可恒温、低电压、长寿命烙铁,具有可靠接地线,并与市电隔离,在修理各种含有贴片元件和集成电路的印制电路板时。

尤为方便安全。

其控制电路由两部分组成(见附图所示).一路以IC23(运放)、VR、IC22(运放)组成的可调基准电压电路;另一路以与加热丝L2(图中的Heater)绕在一起的温度传感电阻丝RT、IC24、IC21组成的温控电路。

这两部分控制信号.分别输入至ICl(C1701C)③脚和④脚,经比较处理后从⑥脚输出触发控制双向可控硅Q1的导通角,以调节L2(加热丝)的加热功率来调温/恒温。

故障1LED1(加热指示灯)亮但烙铁不热LEDl亮,则电源正常。

测加热线圈阻值正常(为4Ω)。

再检查烙铁至控制盒的5根(包括地线)连线无断线,插座接触良好,但双向可控硅Q1无输出电压。

测ICl⑦脚输出电压正常(为14V),查ICl⑥脚有触发信号(直流电压为13.8V)。

取下Q1测量已不能触发导通.将其更换后烙铁加热恒温正常。

故障2LEDl不亮,烙铁也不发热先测电源端有正常的14V,则ICl⑤脚电压为正常的5.4V;④脚为8.03V,调整VR时ICl③脚电压能变化,但当ICl③脚电压高于④脚时,烙铁仍不能加热。

查Q1未坏,判断为ICl坏,将其更换后一切正常。

故障3LEDl亮的时间很短.烙铁温度低经查是VR2失调.因烙铁使用一段时间后.VR2的参数有变动,调整后工作正常。

故障4烙铁温度和恒温点经常变化此故障一般是VR接触不良,使ICl③脚电位不稳定.导致温度失控。

若温度失控而高于310℃时.容易使细密的敷铜线烫脱。

更换VR后调温、恒温正常。

注意:

手柄型号要一致,因为各型号手柄里面的加热丝参数不一致。

维修时根据以上参数来分析排查。

附:

IC1(C1701C)引脚功能描述,IC2是一个普通的四运放1—基准电压输出(3.74.2V);2—比较放大器的输出端;3—比较放大器的反相输入端;4—比较放大器的同向输入端;5—电源(8V)输入端;6—脉冲输出端;7—GND;8—同步信号输入端,工作电流40mA,同步信号电流5mA(RMS)。

第十二篇:

使用四比较器的恒温控制器

使用一个负温度系数(NTC)的热敏电阻,用如图1a的电路可以用最少的元件、成本和复杂性将温度控制到1℃或更好的精度。

该电路含有保护以防止温度传感器短路或开路,且所有的元器件都是常用件。

该控制器是PWM类型的,但它有指数的传递特性,而不是线性的。

这个设计是基于一个LM339(四比较器),并包含了温度补偿。

由于比较器的温漂会产生的Vos的变化,并导致了振荡器输出改变。

然而,在产生工作周期的比较器上,也发生了同样的变化,两者相抵消从而消除了控制器的温漂。

该控制器的核心是由IC1a、IC1b和相关元件组成的振荡器。

振荡器输出的电压峰值和最小电压值是决定控制器精度的主要因素。

关于这个振荡器有以下一些公式:

PERIOD=[R5×R6/(R5+R6)+R4]×C1×Ln[(VasVmin)/(VasVmax)]seconds

DutyCycle=Ln[(VasVtemp)/(VasVmax)]/Ln[(VasVmax)/(VasVmin)]

Vmax=Vcc×R3/(R1+R3)

Vmin=Vcc×R2×R3/[R2×R3+R1×(R2+R3)]

Vas=Vcc×R6/(R5+R6)

Vtemp=Vcc×(R7+R8)/(Rtherm+R7+R8)

振荡器的输出直接接到产生工作周期的比较器IC1c的输入端。

R8决定温度的设置点。

R8到Rtherm的分压为产生工作周期的比较器提供比较电压,比较的输出驱动一个光隔离的双向可控硅驱动器。

图1所示出的元件参数值的温度系列是25~115℃。

D1和D2用于温度传感器错误和工作周期指示。

R9和R10设置IC1d的反相端电平,用以检测到温度传感器的开路。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 自然科学 > 生物学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2