第一节鸟纲的主要特征word资料13页.docx

上传人:b****8 文档编号:12314980 上传时间:2023-06-05 格式:DOCX 页数:17 大小:32.62KB
下载 相关 举报
第一节鸟纲的主要特征word资料13页.docx_第1页
第1页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第2页
第2页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第3页
第3页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第4页
第4页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第5页
第5页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第6页
第6页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第7页
第7页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第8页
第8页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第9页
第9页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第10页
第10页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第11页
第11页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第12页
第12页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第13页
第13页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第14页
第14页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第15页
第15页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第16页
第16页 / 共17页
第一节鸟纲的主要特征word资料13页.docx_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

第一节鸟纲的主要特征word资料13页.docx

《第一节鸟纲的主要特征word资料13页.docx》由会员分享,可在线阅读,更多相关《第一节鸟纲的主要特征word资料13页.docx(17页珍藏版)》请在冰点文库上搜索。

第一节鸟纲的主要特征word资料13页.docx

第一节鸟纲的主要特征word资料13页

第一节鸟纲的主要特征

语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。

常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。

  鸟类是体表被覆羽毛、有翼、恒温和卵生的高等脊椎动物。

从生物学观点来看,鸟类最突出的特征是新陈代谢旺盛,并能在空气中飞行,这也是鸟类与其他脊椎动物的根本区别,使其在种数(9千余种)上成为仅次于鱼类,遍布全球的脊椎动物。

语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。

常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。

  鸟类起源于爬行类,在躯体结构和功能方面有很多类似爬行类的特征,以至有人曾把它们归入蜥形类(Sauropsida)。

但是鸟类同爬行类的根本区别,在于有以下几方面的进步性特征:

教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。

如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。

  1.具有高而恒定的体温(约为37.0℃~44.6℃),减少了对环境的依赖性。

  2.具有迅速飞翔的能力,能借主动迁徙来适应多变的环境条件。

  3.具有发达的神经系统和感官,以及与此相联系的各种复杂行为,能更好地协调体内外环境的统一。

  4.具有较完善的繁殖方式和行为(造巢、孵卵和育雏),保证了后代有较高的成活率。

  学习鸟类的躯体结构和功能,应以上述内容作为线索,在注意总结鸟类与爬行类相近似的特征以及鸟类的进步性特征的基础上,重点归纳鸟类由于适应飞翔的生活方式,在躯体结构、功能以及生活方式方面所引起的特化。

一、恒温及其在动物演化史上的意义

  鸟类与哺乳类都是恒温动物,这是动物演化历史上的一个极为重要的进步性事件。

恒温动物具有较高而稳定的新陈代谢水平和调节产热、散热的能力,从而使体温保持在相对恒定的、稍高于环境温度的水平。

这与无脊椎动物以及低等脊椎动物(鱼类、两栖类、爬行类)有着本质的区别,后者称为变温动物。

变温动物的热代谢特征是:

新陈代谢水平较低、体温不恒定,缺乏体温调节的能力。

  高而恒定的体温,促进了体内各种酶的活动、发酵过程,使数以千计的各种酶催化反应获得最大的化学协调,从而大大提高了新陈代谢水平。

根据测定,恒温动物的基础代射率至少为变温动物的6倍。

有人把恒温动物比喻为一个活的发酵桶,以说明它对促进热能代谢方面的意义。

在高温下,机体细胞(特别是神经和肌肉细胞)对刺激的反应迅速而持久,肌肉的粘滞性下降,因而肌肉收缩快而有力,显著提高了恒温动物快速运动的能力,有利于捕食及避敌。

恒温还减少了对外界环境的依赖性,扩大了生活和分布的范围,特别是获得在夜间积极活动(而不像变温动物那样,一般在夜间处于不活动状态)的能力和得以在寒冷地区生活。

有人认为,这是中生代哺乳类之所以能战胜在陆地上占统治地位的爬行类的重要原因。

  恒温动物的体温均略高于环境温度,这是由于在冷环境温度下,有机体散热容易。

在低于环境温度下生活,会引起“过热”而致死。

但恒温动物的体温又不能过高,这除了能量消耗因素以外,很多蛋白质在接近50℃时即变性(denaturation)。

  恒温是产热和散热过程的动态平衡。

产热与散热相当,动物体温即可保持相对稳定;失去平衡就会引起体温波动,甚至导致死亡。

鸟类与哺乳类之所以能迅速地调整产热和散热,是与具有高度发达的中枢神经系统密切相关的。

体温调节中枢(丘脑下部)通过神经和内分泌腺的活动来完成协调。

由此可见,恒温是脊椎动物躯体结构和功能全面进化的产物。

产热的生物化学机制的基本过程是,脊椎动物的甲状腺素作用于肌肉、肝和肾脏,激活了与细胞膜相结合的、依赖于Na+、K+的ATP(腺苷三磷酸)酶,使ATP分解而放出热量。

  恒温的出现,是动物有机体在漫长的发展过程中与环境条件对立统一的结果。

根据近年来的大量实验证实,即使是变温动物,其中的个别种类也可通过不同的产热途径来实现暂时的、高于环境温度的体温。

例如,以遥测技术探知,某些快速游泳的海产鱼类(一些金枪鱼及鲨鱼),通过特殊的产热肌肉群的收缩放热,以及复杂的血液循环通路(使血液中所含有的高代谢热量,不致因血液流经鳃血管而散失于水中),从而获得高于水温的体温。

将一条蓝鳍鲔长距离放流遥测表明,当水温在10℃变化范围(14℃~5℃)的情况下,胃内温度仍可稳定在18℃左右。

一种高山蜥蜴(Liolaemusmultiformis)在接近冰点的稀薄冷空气下,测得体温为31℃,这是借皮肤吸收太阳的辐射热而提高体温的。

一种印度蟒蛇,雌者可借躯体肌肉的不断收缩而产热(比环境温度高7℃)从而把所缠绕的卵孵出。

这些事实再一次证实“一切差异都在中间阶段融合,一切对立都经过中间环节而互相过渡”。

二、鸟纲的躯体结构

  

(一)外形鸟类身体呈纺锤形,体外被覆羽毛(feather),具有流线型的外廓,从而减少了飞行中的阻力。

头端具角质的喙(bill),是啄食器官。

喙的形状与食性有密切关系。

颈长而灵活,尾退化、躯干紧密坚实、后肢强大,这些都是与飞行生活方式密切相关的:

躯干坚实和尾骨退化有利于飞行的稳定;颈部发达可弥补前肢变成翅膀后的不便;眼大,具眼睑及瞬膜可保护眼球。

瞬膜是一种近于透明的膜,能在飞翔时遮覆眼球,以避免干燥气流和灰尘对眼球的伤害。

鸟类瞬膜内缘具有一种羽状上皮(featherepithelium),在地栖性的鸟类(如鸽与雉鸡)尤为发达,能借以刷洗灰尘;水禽及猛禽则很少(图19—1)。

耳孔略凹陷,周围着生耳羽,有助于收集声波。

夜行性鸟类(如猫头鹰)的耳孔极为发达。

  前肢变为翼(wing),后肢具4趾,这是鸟类外形上与其他脊椎动物不同的显著标志。

拇趾通常向后,适于树栖握枝。

鸟类足趾的形态与生活方式有密切关系。

  尾端着生有扇状的正羽,称为尾羽,在飞翔中起着舵的作用。

尾羽的形状与飞翔特点有关。

  

(二)皮肤鸟类皮肤的特点是雹松而且缺乏腺体。

薄而松的皮肤,便于肌肉剧烈运动。

鸟类的皮肤缺乏腺体,这与爬行类颇为相似。

鸟类唯一的皮肤腺称尾脂腺(oilgland或uropygialgland),它能分泌油质以保护羽毛不致变形,并可防水,因而水禽(鸭、雁等)的尾脂腺特别发达。

但有些种类(例如鸸鹋、鹤鸵、鸨及鹦鹉等)则不具。

它的分泌物是一种类脂物,可能还含有维生素D。

最近关于尾脂腺的化学成分在分类学上的意义问题,已引起学术界的重视。

也有人报道,在鸡、鸽和鹌鹑的皮肤里,含有大量的能分泌脂肪的单个细胞。

鸟类外耳道的表皮能分泌一种蜡质物,其中含有脱鳞细胞(desquamatedcells)。

  鸟类的皮肤外面具有由表皮所衍生的角质物,如羽毛、角质喙、爪和鳞片等。

一些鸟类的冠(comb)及垂肉(wattle),为加厚的、富于血管的真皮所构成,其内富有动静脉吻合(anastomosis)结构。

  羽毛着生在体表的一定区域内,成为羽迹(feathertract),这些地方称为羽区(pteryla)。

不着生羽毛的地方称裸区(apteria)(图19-2)。

羽毛的这种着生方式,有利于剧烈的飞翔运动。

鸟类腹部的裸区,还与孵卵有密切关系;雌鸟在孵卵期间,腹部羽毛大量脱落,称“孵卵斑”。

根据这个特点可判断在野外所采集的鸟类是否已进入繁殖期。

羽衣的主要功能是:

①保持体温,形成隔热层。

通过附着于羽基的皮肤肌,可改变羽毛的位置,从而调节体温;②构成飞翔器官的一部分——飞羽及尾羽;③使外廓更呈流线型,减少飞行时的阻力;④保护皮肤不受损伤。

羽色还可成为一些鸟类(如地栖性鸟类及大多数孵卵雌鸟)的保护色。

  根据羽毛的构造和功能,可分以下几种:

  1.正羽(contourfeather)又称翮羽,为被覆在体外的大型羽片。

翅膀及尾部均着生有一列强大的正羽,分别称为飞羽(flightfeather)和尾羽(tailfeather)。

飞羽及尾羽的形状和数目,是鸟类分类的依据之一。

正羽由羽轴和羽片所构成。

羽轴下段不具羽片的部分称为羽根,羽根深插入皮肤中。

羽片是由许多细长的羽枝所构成。

羽枝两侧又密生有成排的羽小枝。

羽小枝上着生钩突或节结,使相邻的羽小枝互相钩结起来,构成坚实而具有弹性的羽片,以搧动空气和保护身体(图21—3)。

由外力分离开的羽小枝,可借鸟喙的啄梳而再行钩结。

鸟类经常啄取尾脂腺所分泌的油脂,于啄梳羽片时加以涂抹,使羽片保持完好的结构和功能。

  2.绒羽(plumule;downfeather)位于正羽下方,呈棉花状,构成松软的隔热层。

绒羽在水禽特别发达,有重要经济价值的鸭绒就是这种羽毛。

绒羽的结构特点是羽轴纤弱,羽小枝的钩状突起不发达,因而不能构成坚实的羽片。

幼雏的绒羽不具羽小枝(图19—3)。

  3.纤羽(filoplume;hairfeather)又称毛状羽,外形如毛发,杂生在正羽与绒羽之中。

在拔掉正羽与绒羽之后可见到(图19—3)。

纤羽的基本功能为触觉。

  鸟类羽毛是表皮细胞所分生的角质化产物,在系统进化上与爬行类的角质鳞片是同源的,有一种假说认为,鸟类的爬行类祖先在朝着适应于飞翔生活方式的进化过程中,角质鳞片逐渐增大延伸,然后劈裂成枝,即成羽毛。

  从个体发育可见,羽毛最初源于由真皮与表皮所构成的羽乳头。

随着羽乳头的生长,其表层形成许多纵行的角质羽柱,即为未来的羽枝。

随后,位于背方的羽柱发育迅速,成为未来的羽茎;羽茎两侧的羽柱随羽茎的生长而移至其两侧排列,即为羽枝,由它们构成羽片(图19—4)。

  鸟类的嘴缘及眼周大多具须(bristle),为一种变形的羽毛,仅在羽干基部有少数羽支或不具羽支,有触觉功能。

  鸟类的羽毛是定期更换的,称为换羽(molt)。

通常一年有两次换羽:

在繁殖结束后所换的新羽称冬羽(winterplumage)。

冬季及早春所换的新羽称夏羽(summerplumage)或婚羽(nuptial)。

换羽的生物学意义在于有利于完成迁徙、越冬及繁殖过程。

甲状腺的活动是引起换羽的基础,在实践中注射甲状腺素或饲以碎甲状腺,能引起鸟类脱羽。

  飞羽及尾羽的更换大多是逐渐更替的,使换羽过程在不影响飞翔力的情况下进行。

但雁鸭类的飞羽更换则为一次全部脱落。

在这个时期内丧失飞翔能力,隐蔽于人迹罕至的湖泊草丛中。

在研究雁鸭类迁徙的工作中,常利用这个时机张网捕捉,进行大规模的环志工作。

对于繁殖期及换羽期的雁鸭类,应严禁滥捕。

  (三)骨骼鸟类适应于飞翔生活,在骨骼系统方面有显著的特化,主要表现在:

骨骼轻而坚固,骨骼内具有充满气体的腔隙(pneumatization),头骨、脊柱、骨盘和肢骨的骨块有愈合现象,肢骨与带骨有较大的变形(图19—5)。

  1.脊柱及胸骨脊柱由颈椎、胸椎、腰椎、荐椎及尾椎五部分组成。

颈椎数目变异较大,从8枚(一些小型鸟类)至25枚(天鹅)不等,家鸽为14枚,鸡为16~17枚。

颈椎椎骨之间的关节面呈马鞍形,称异凹型椎骨。

这种特殊形式的关节面使椎骨间的运动十分灵活。

此外,鸟类的第一枚颈椎呈环状,称为寰椎;第二枚颈椎称为枢椎。

与头骨相联结的寰椎,可与头骨一起在枢椎上转动,这就大大提高了头部的活动范围。

鸟类头部运动灵活,转动范围可达180°,猫头鹰甚至可转270°。

颈椎具有这种特殊的灵活性,是与前肢变为翅膀和脊柱的其余部分大多愈合密切相关的。

  胸椎5~6枚。

借硬骨质的肋骨与胸骨联结,构成牢固的胸廓。

鸟类的肋骨不具软骨,而且借钩状突彼此相关连,这与飞翔生活有密切联系:

胸骨是飞翔肌肉(胸肌)的起点,当飞翔时体重是由翅膀来负担,因而坚强的胸廓对于保证胸肌的剧烈运动和完成呼吸,是十分必要的。

鸟类胸骨中线处有高耸的龙骨突(keel),以增大胸肌的固着面。

在不善飞翔的鸟类(如鸵鸟),胸骨扁平。

  愈合荐骨(综荐骨)(synsacrum)是鸟类特有的结构。

它是由少数胸椎、腰椎、荐椎以及一部分尾椎愈合而成的,而且它又与宽大的骨盘(髂骨、坐骨与耻骨)相愈合,使鸟类在地面步行时获得支持体重的坚实支架。

鸟类尾骨退化,最后几枚尾骨愈合成一块尾综骨(pygostyle),以支撑扇形的尾羽。

鸟类脊椎骨骼的愈合以及尾骨退化,就使躯体重心集中在中央,有助于在飞行中保持平衡。

  2.头骨鸟类头骨的一般结构与爬行类相似,例如,具有单一的枕骨髁、化石鸟类尚可见头骨后侧有双颞窝的痕迹、听骨由单一的耳柱骨所构成以及嵴底型脑颅等。

但它适应于飞翔生活所引起的特化是非常显著的,主要表现在:

  

(1)头骨薄而轻。

各骨块间的缝合在成鸟的颅骨已愈合为一个整体,而且骨内有蜂窝状充气的小腔。

这就解决了轻便与坚实的矛盾。

  

(2)上下颌骨极度前伸,构成鸟喙。

这是鸟类区别于所有脊椎动物的结构。

鸟喙外具角质鞘,构成锐利的切缘或钩,是鸟类的取食器官。

现代鸟类均无牙齿,通常认为这也是对减轻体重(牙齿退化连同咀嚼肌肉不发达)的适应。

  (3)脑颅和视觉器官的高度发达,在颅型上所引起的改变:

颅腔的膨大,使头骨顶部呈圆拱形,枕骨大孔移至腹面。

眼眶的膨大,使这一区域的脑颅侧壁被压挤至中央(因而将脑颅腔后推),构成眶间隔。

眶间隔在某些爬行类即已存在,但鸟类由于眼球的特殊发达,从而更强化了这个特点(图19—6)。

  3.带骨及肢骨鸟类带骨和肢骨也有愈合及变形现象,这也是对特殊生活方式的适应。

  肩带由肩胛骨、乌喙骨和锁骨构成。

三骨的联结处构成肩臼,与翼的肱骨相关节。

鸟类的左右锁骨以及退化的间锁骨在腹中线处愈合成“V”形,称为叉骨(wishbone),是鸟类特有的结构。

叉骨具有弹性,在鸟翼剧烈搧动时可避免左右肩带(主要是乌喙骨)碰撞。

前肢特化为翼,主要表现在手部骨骼(腕骨、掌骨和指骨)的愈合和消失现象,使翼的骨骼构成一个整体,搧翅才能有力。

由于指骨退化,现代鸟类大都无爪(图19-7)。

少数种类,例如南美的麝雉(Opisthocomushoa-zin)的幼鸟指上尚具2爪,用于攀缘。

鸟类手部(腕、掌骨及指骨)所着生的一列飞羽称初级飞羽(primaries),下臂部(尺骨)所着生的一列飞羽称次级飞羽(secondaries)。

飞羽是飞翔的主要羽毛,它们的形状和数目(特别是初级飞羽)是鸟类分类学的重要依据(图19—8)。

  鸟类腰带的变形,与用后肢支持体重和产大型具硬壳的卵有密切关系。

腰带(髂骨、坐骨及耻骨)愈合成薄而完整的骨架,其髂骨部分并向前后扩展,与愈合荐骨相愈合,这就使后肢得到强有力的支持。

耻骨退化,而且左右坐骨、耻骨不像其他陆生脊椎动物那样在腹中线处相汇合联结,而是一起向侧后方伸展,构成所谓“开放式骨盘”,这是与产生大型硬壳卵有密切关系的。

然而在极少数陆栖原始种类(例如鸵鸟),左右耻骨或坐骨在腹中线处尚有联合现象。

鸟类的后肢强健,股骨与腰带的髋臼相关节。

下腿骨骼有较大变化:

腓骨退化成刺状;相当于一般四足动物的胫骨,与其相邻的一排退化的跗骨相愈合,构成一细长形的腿骨,称为胫跗骨(tibiotarsus),远端一排的退化跗骨与其相邻的跖骨相愈合,构成一块细长形的足骨,称为跗跖骨(tarsometatar-sus)。

这种简化成单一的(胫跗骨及跗跖骨)骨块关节以及这两块骨骼的延长,能增加起飞和降落时的弹性。

大多数鸟类均具4趾,拇趾向后,以适应于树栖握枝(图19—9)。

鸟趾的数目及形态变异是鸟类分类学的依据。

  (四)肌肉鸟类的肌肉系统与其他脊椎动物一样,是由骨骼肌(横纹肌)、内脏肌(平滑肌)和心肌组成。

鸟类由于适应于飞翔生活,在骨骼肌的形态结构上有显著改变,这些改变主要可归结为:

  1.由于胸椎以后的脊柱的愈合,而导致背部肌肉的退化。

颈部肌肉则相应发达。

  2.使翼扬起(胸小肌)及下搧(胸大肌)的肌肉十分发达(占整个体重的1/5),它们的起点均附着在胸骨上,通过特殊的联结方式而使翼搧动(图19—10)。

此外,不论是支配前肢及后肢运动的肌肉,其肌体部分均集中于躯体的中心部分,而是以伸长的肌腱来“远距离”操纵肢体运动。

这对保持重心的稳定,维持在飞行中的平衡,有着重要意义。

  3.后肢具有适宜于栖树握枝的肌肉。

这些与树栖有关的肌肉(例如栖肌、贯趾屈肌和腓骨中肌),能够借肌腱、肌腱鞘与骨骼关节三者间的巧妙配合,而使鸟类栖止于树枝上时,由于体重的压迫和腿骨关节的弯曲,导致与屈趾有关的上述肌肉的肌腱拉紧,足趾自然地随之弯曲而紧紧抓住树枝(图19—11)。

栖肌(ambiens)并非鸟类所特有,它始见于爬行类,在高等鸟类(例如雨燕目和雀形目)消失。

  4.具有特殊的鸣管肌肉,可支配鸣管(以及鸣膜)改变形状而发出多变的声音或鸣啭。

鸣肌在雀形目鸟类(鸣禽)特别发达。

  鸟类的颌肌、前后肢肌和鸣肌,常做为研究鸟类分类学的依据。

近年来对有关鸡类的后肢肌群、鸮类的鸣肌和鸥类的翅肌等分类方面以及猛禽颌肌的功能形态学等领域,都作了较深入的研究。

  (五)消化鸟类消化系统的主要特点是:

具有角质喙以及相应的轻便的颌骨和咀嚼肌群,这与牙齿退化,以吞食方式将食物存贮于消化道内有关。

喙的形状因食性和生活方式不同而有很大变异。

绝大多数鸟类的舌均覆有角质外鞘,舌的形态和结构与食性和生活方式有关;取食花蜜鸟类的舌有时呈吸管状或刷状;啄木鸟的舌具倒钩,能把树皮下的害虫钩出。

某些啄木鸟和蜂鸟的舌,借特殊的构造而能伸出口外甚远,最长者可达体长的2/3。

口腔内有唾液腺,其主要分泌物是粘液,仅在食谷的燕雀类唾液腺内含有消化酶。

在鸟类中以雨燕目的唾液腺最发达,其内含有粘的糖蛋白(glycoprotein),它们以唾液将海藻粘合而造巢,其中的金丝燕所筑的巢,即为传统的滋补品“燕窝”,目前国际上为保护金丝燕,已禁止采集。

有些鸟类的食管一部分特化为嗉囊(crop),它具有贮藏和软化食物的功能。

雌鸽在繁殖期间,嗉囊壁能分泌一种液体,称为“鸽乳”,用以喂饲雏鸽。

食鱼鸟类(如鸬鹚和鹈鹕)以嗉囊内制成的食糜饲雏。

鸟类的胃分为腺胃(前胃)(glandularstomach或proventriculus)和肌胃(砂囊)(muscularstomach或gizzard)两部分。

腺胃壁内富有腺体,可分泌粘液(为一种强酸)和消化液;肌胃外壁为强大的肌肉层,内壁为坚硬的革质层(中药“鸡内金”就是这个部分),腔内并容有鸟类不断啄食的砂砾。

在肌肉的作用下,革质壁与砂砾一起将食物磨碎。

砂砾对于种子的消化有密切关系,实验证明,胃内容有砂砾的鸡,对燕麦的消化力提高3倍,对一般谷物及种子的消化力可提高10倍。

肉食性鸟类的肌胃不发达。

鸟类的直肠极短,不贮存粪便,且具有吸收水分的作用,有助于减少失水以及飞行时的负荷。

在小肠与大肠交界处着生有一对盲肠,在以植物纤维为主食的鸟类(如鸡类)特别发达。

盲肠具有吸水作用,并能与细菌一起消化粗糙的植物纤维。

有人认为盲肠液有显著的集聚维生素B的作用。

肛门开口于泄殖腔,这一点还保留着似爬行类的特征(图19—12)。

鸟类泄殖腔的背方有一个特殊的腺体,称为腔上囊(bursafabricii)。

腔上囊在幼鸟发达,到成体则失去囊腔成为一个具有淋巴上皮的腺体结构(图19—13)。

腔上囊尽管已被公认是一种淋巴组织,但近来有人提出,它似乎能产生具有免疫成分的分泌物,其中含有类似肾上腺皮质激素或甲状腺激素的活性。

腔上囊还被用做鉴定鸟类年龄的一种指标,特别在鉴定鸡形目鸟类的年龄方面已被广泛应用。

  鸟类消化生理方面的特点是消化力强、消化过程十分迅速,这是鸟类活动性强,新陈代谢旺盛的物质基础。

实验证实,以谷物、果实或昆虫所饲喂的雀形目鸟类,经1.5小时后即可通过消化道。

绿嘴黑鸭(Anasrubripes)的食物经30分钟后即可排出。

高度的消化力和能量消耗,使鸟类食量大,进食频繁。

雀形目鸟类一天所吃的食物约相当体重的10%~30%。

蜂鸟一天所吃的蜜浆等于其体重的一倍。

体重1500g的雀鹰,能在一昼夜吃掉800g~1000g肉。

这些都与高能量消耗密切相关。

据计算红喉蜂鸟(Calypteanna)休息时,每小时每克体重消耗10.7mm3~16.0mm3的氧气,但在飞翔时则增大到85mm3。

  鸟类主要的消化腺是肝脏和胰脏,它们分别分泌胆汁和胰液注入十二指肠。

在功能上与其他脊椎动物没有本质的区别。

  (六)呼吸鸟类的呼吸系统十分特化,表现在具有非常发达的气囊(airsac)系统与肺气管相通连。

气囊广布于内脏、骨腔以及某些运动肌肉之间。

气囊的存在,使鸟类产生独特的呼吸方式——双重呼吸(dualrespiration),这与其他陆栖脊椎动物仅在吸气时吸入氧气有显著不同。

鸟类呼吸系统的特殊结构,是与飞翔生活所需的高氧消耗相适应的,实验表明,一支飞行中的鸟类所消耗的氧气,比休息时大21倍。

气囊也是保证鸟类在飞翔时供应足够氧气的装置。

鸟类在栖止时,主要靠胸骨和肋骨运动来改变胸腔容积,引起肺和气囊的扩大和缩小,以完成气体代谢。

当飞翔时,胸骨做为搧翅肌肉(胸大肌和胸小肌)的起点,趋于稳定,因而主要靠气囊的伸缩来协助肺完成呼吸。

扬翼时气囊扩张,空气经肺而吸入;搧翼时气囊压缩,空气再次经过肺而排出。

因而鸟类飞翔越快,搧翼越猛烈,气体交换也越快,这样就确保了氧气的充分供应。

  鸟类肺与气囊的构造十分复杂,这里只着重阐明结构的特点和机能(图19—14)。

鸟类的肺相对体积是较小的,是一种海绵状缺乏弹性的结构。

这种结构主要是由大量的细支气管组成,其中最细的分支是一种呈平行排列的支气管,称为三极支气管或平行支气管。

在三级支气管周围有放射状排列的微气管,其外分布有众多的毛细血管,气体交换即在此处进行,它是鸟肺的功能单位。

从这个意义来说,相当于其他陆栖脊椎动物(特别是哺乳类)的肺泡,但在结构上又有本质的区别,即肺泡乃系微细支气管末端膨大的盲囊,而鸟类的微气管却与背侧及腹侧的较大支气管相通连,因而不具盲端(图19-15,图19-16)。

鸟类的微气管直径仅有3μm~10μm,其肺的气体交换总面积(cm2/g体重)比人约大10倍。

  气管入肺之后,成为贯穿肺体的中支气管(也叫初级支气管)。

中支气管向背、腹发出很多分支,称背支气管与腹支气管,它们又总称为次级支气管。

背、腹支气管借数目众多的平行支气管(三级支气管)相互联结,气体在肺内沿一定方向流动,即从背支气管→平行支气管→腹支气管,称为“d-p-v系统”。

也就是呼气与吸气时,气体在肺内均为单向流动(auniderectionalpath-way)。

  气囊是鸟类的辅助呼吸系统,主要由单层鳞状上皮细胞构成,有少量结缔组织和血管,它缺乏气体交换的功能。

鸟类一般有9个气囊,其中与中支气管末端相通连的为后气囊(腹气囊及后胸气囊),与腹支气管相通连的为前气囊(颈气囊、锁间气囊和前胸气囊);除锁间气囊为

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2