基因工程原理.docx

上传人:b****2 文档编号:1251154 上传时间:2023-04-30 格式:DOCX 页数:47 大小:656.90KB
下载 相关 举报
基因工程原理.docx_第1页
第1页 / 共47页
基因工程原理.docx_第2页
第2页 / 共47页
基因工程原理.docx_第3页
第3页 / 共47页
基因工程原理.docx_第4页
第4页 / 共47页
基因工程原理.docx_第5页
第5页 / 共47页
基因工程原理.docx_第6页
第6页 / 共47页
基因工程原理.docx_第7页
第7页 / 共47页
基因工程原理.docx_第8页
第8页 / 共47页
基因工程原理.docx_第9页
第9页 / 共47页
基因工程原理.docx_第10页
第10页 / 共47页
基因工程原理.docx_第11页
第11页 / 共47页
基因工程原理.docx_第12页
第12页 / 共47页
基因工程原理.docx_第13页
第13页 / 共47页
基因工程原理.docx_第14页
第14页 / 共47页
基因工程原理.docx_第15页
第15页 / 共47页
基因工程原理.docx_第16页
第16页 / 共47页
基因工程原理.docx_第17页
第17页 / 共47页
基因工程原理.docx_第18页
第18页 / 共47页
基因工程原理.docx_第19页
第19页 / 共47页
基因工程原理.docx_第20页
第20页 / 共47页
亲,该文档总共47页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

基因工程原理.docx

《基因工程原理.docx》由会员分享,可在线阅读,更多相关《基因工程原理.docx(47页珍藏版)》请在冰点文库上搜索。

基因工程原理.docx

基因工程原理

基因工程原理

内容提要

1.基因工程又称基因操作、重组DNA技术, 是P.Berg等于1972年创建的。

基因工程技术涉及的基本过程包括“切、连、转、选”。

该技术有两个基本的特点∶分子水平上的操作和细胞水平上的表达。

2.基因工程中使用多种工具酶,包括限制性内切核酸酶、DNA连接酶和其他一些参与DNA合成与修饰的酶类.

3.限制性内切核酸酶是基因工程中最重要的工具酶,属于水解酶类.根据限制性内切核酸酶的作用特点,被分为三大类。

Ⅱ类限制性内切核酸酶是基因工程中最常用的酶,该类酶的分子量小,专一性强,切割的方式有平切和交错切,作用时需要Mg++作辅助因子,但不需要ATP和SAM。

第一个被分离的Ⅱ类酶是HindⅡ。

4.连接酶是一类用于核酸分子连接形成磷酸二酯键的核酸酶,有DNA连接酶和RNA连接酶之分。

基因工程中使用的连接酶来自于原核生物,有两种类型的DNA连接酶∶E.coliDNA连接酶和T4—DNA连接酶。

基因工程中使用的主要是T4DNA连接酶,它是从T4噬菌体感染的E.coli中分离的一种单链多肽酶,既能进行粘性末端连接又能进行平末端连接。

5.载体是能将分离或合成的基因导入细胞的DNA分子,有三种主要类型∶质粒DNA、病毒DNA、科斯质粒,在这三种类型的基础上,根据不同的目的,出现了各种类型的改造载体。

6.DNA重组连接的方法大致分为四种:

粘性末端连接、平末端连接、同聚物接尾连接、接头连接法。

粘性末端连接法是最常用的DNA连接方法,是指具有相同粘性末端的两个双链DNA分子在DNA连接酶的作用下,连接成为一个杂合双链DNA。

平末端连接是指在T4DNA连接酶的作用下,将两个具有平末端的双链DNA分子连接成杂种DNA分子.同聚物加尾连接就是利用末端转移酶在载体及外源双链DNA的3'端各加上一段寡聚核苷酸,制成人工粘性末端, 外源DNA和载体DNA分子要分别加上不同的寡聚核苷酸,如dA(dG)和dT(dC),然后在DNA连接酶的作用下,连接成为重组的DNA。

这种方法可适用于任何来源的DNA片段,但方法较繁,需要λ核酸外切酶、S1核酶、末端转移酶等协同作用.将人工合成的或来源于现有质粒的一小段DNA分子(在这一小段DNA分子上有某种限制性内切酶的识别序列),加到载体或外源DNA的分子上,然后通过酶切制造黏性末端的方法称为接头连接法。

7.基因文库分为基因组文库、cDNA文库等,是指在一种载体群体中,随机地收集着某一生物DNA的各种克隆片段,理想地包含着该物种的全部遗传信息.

8.DNA重组分子在体外构建完成后,必须导入特定的受体细胞,使之无性繁殖并高效表达外源基因或直接改变其遗传性状,这个导入过程及操作统称为重组DNA分子的转化.目前常用的诱导感受态转化的方法是CaCl2法(图3—20),此外也可以用基因枪等方法转化外源DNA。

9.重组体筛选有遗传学方法、核酸杂交筛选法等。

10.基因工程技术是现代生物技术的核心,目前在工业、农业和医疗中已经显示了巨大的应用前景,并形成了一大批生物技术产业。

 

基因工程是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因(DNA分子),按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性,获得新品种,生产新产品;或是研究基因的结构和功能,揭示生命活动规律。

 基因工程技术诞生于20世纪70年代初,它是一门崭新的生物技术科学,它的创立和发展使生命科学产生了一次重大飞跃,证明并实现了基因的可操作性,使人类从简单地利用天然生物资源走向定向改造和创造具有新品质的生物资源的时代. 基因工程技术诞生至今已经取得了辉煌的成就,成为当今生命科学研究领域中最有生命力和最引人注目的前沿学科之一,基因工程也是当今新的产业革命的一个重要组成部分。

第一节 基因工程技术的诞生 

基因工程又称基因操作(gene manipulation),重组DNA(recombinant DNA)技术,是70年代发展起来的遗传学的一个分支学科。

一、基因工程技术的诞生

1972年,P。

Berg等在PNAS上发表了题为∶“将新的遗传信息插入SV40病毒DNA的生物化学方法:

含有λ噬菌体基因和E.coli半乳糖操纵子的环状SV40DNA”,标志着基因工程技术的诞生。

 SV40病毒是猿猴病毒,是一种直径为450

的球形病毒,分子量为28×106道尔顿。

SV40的DNA是环状双链结构,全长5243个碱基对,编码三个衣壳蛋白VP1、VP2、VP3和一个T抗原。

SV40DNA上有一个限制性内切酶E。

coRⅠ的切点.Berg等首先用化学方法构建了一个二聚体的环状SV40DNA(图3-1).

图3—1重组的SV40二聚体的构建(引自Berget。

al,1972)

当时所用的连接方法是同聚物谱尾法,重组体的鉴定主要是通过电子显微镜比较分子量大小。

当获得二聚体SV40DNA后,Berg等就证明了环状DNA被内切酶切成线性DNA后能够重新环化,并且能够同另外的分子重组。

于是他们进行第二步的实验就是从 λdvgalDNA中制备含有 E.coli 的半乳糖操纵子DNA,用上述同样的方法进行重组连接,并获得成功。

 Berg等的工作是人类第一次在体外给遗传物质动手术,标志着一个新时代的到来,为此他获得了1980年诺贝尔化学奖。

二、基因操作的基本过程 和特点

基因工程的操作可用图3-2表示∶

图3-2基因工程的基本过程(引自Old&Primrose,1980)

它所涉及的过程可用“分(合成)、切、连、转、选、鉴"六个字表示。

分(合成)∶指DNA的制备,包括从生物体中分离或人工合成。

分离制备或合成制备DNA的方法都有很多种。

切∶即在体外将DNA进行切割,使之片段化或线性化。

连∶即在体外将不同来源的DNA分子重新连接起来,构建重组DNA分子。

转∶即将重组连接的DNA分子通过一定的方法重新送入或细胞中进行扩增和表达.

选∶从转化的全群体中将所需要的目的克隆挑选出来; 

鉴∶就是进行对筛选出来的重组体进行鉴定,因为有些重组体并非是所需要的,必需通过分析鉴定。

 

基因工程有两个基本的特点∶分子水平上的操作和细胞水平上的表达。

遗传重组是生物进化的推动力,自然界中发生的遗传重组主要是靠有性生殖。

基因工程技术的诞生使人们能够在试管里进行分子水平上的操作,构建在生物体内难以进行的重组,然后将重组的遗传物质引入相应的宿主细胞,让其在宿主细胞中进行工作。

这实际上是进行无性繁殖,即克隆,所以基因工程通常有称为基因克隆。

 

第二节限制性内切核酸酶

外科医生给患者动手术需要手术刀,基因工程师们给DNA分子(基因)动手术需要分子手术刀,这就是工具酶。

基因工程中使用的工具酶很多,包括限制性内切核酸酶、DNA连接酶和其他一些参与DNA合成与修饰的酶类,最重要的是限制性内切核酸酶。

基因工程上把那些具有识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸内切酶统称为限制性内切核酸酶。

一、限制性内切核酸酶的发现

1952年Luria、Human在T偶数噬菌体、1953年weigle、Bertani在 λ噬菌体对大肠杆菌的感染实验中发现了细菌的限制和修饰现象。

正是对限制和修饰现象的深入研究,导致限制性内切核酸酶的发现。

噬菌体在某一特定细菌宿主中生长的能力,取决于它最终在其中繁殖的细菌是什么菌株。

例如,将A噬菌体从一株大肠杆菌转移到另外一株,其生长效率往往会削弱,对这两个菌株的滴定度可差好几个数量级。

第二个菌株释放的噬菌体能百分之百再感染同类菌株,但是若先将它们感染原来的宿主菌,再将释放的子代噬菌体重新感染第二个菌株时,感染率要大大下降。

此种现象即为宿主控制的限制作用(host—Controlled restriction)。

用放射性同位素标记的噬菌体进行的实验结果表明,在受感染的宿主细胞中,噬菌体生长的限制伴有噬菌体DNA的迅速降解,然而,用作繁殖噬菌体的感染宿主菌株并不导致类似的噬菌体DNA的降解.如果某一细菌细胞具有一种能选择性降解来自侵染病毒(或其他来源)的核酸酶,那么,它必须能将这种外来DNA同它自己的DNA区分开来,之所以能够如此,乃是通过稍为宿主控制的修饰作用(host-controlledmodification)。

因此,限制(restriction)作用是指细菌的限制性核酸酶对DNA的分解作用,限制一般是指对外源DNA侵入的限制。

修饰(modification)作用是指细菌的修饰酶对于DNA碱基结构改变的作用(如甲基化),经修饰酶作用后的DNA可免遭其自身所具有的限制酶的分解。

到20世纪60年代中期,科学家推测细菌中有限制—修饰系统(restriction—modificationsystem. R—Msystem).该系统中有作用于同一DNA的两种酶,即分解DNA的限制酶和改变DNA碱基结构使其免遭限制酶分解的修饰酶,而且,这两种酶作用于同一DNA的相同部位.一般说来,不同种的细菌或不同种的细菌菌株具有不同的限制酶和修饰酶组成的限制-修饰系统.

1968年,Meselson从E。

coli K株中分离出了第一个限制酶EcoK,同年Linn和Aeber从E.coli B株中分离到限制酶EcoB。

遗憾的是,由于EcoK和EcoB这两种酶的识别和切割位点不够专一,在基因工程中意义不大。

 

1970年,Smith和Wilcox从流感嗜血杆菌中分离到一种限制性酶,能够特异性地切割 DNA,这个酶后来命名为HindⅡ,这是第一个分离到的Ⅱ类限制性内切核酸酶。

由于这类酶的识别序列和切割位点特异性很强,对于分离特定的DNA片段就具有特别的意义。

二、限制性内切核酸酶的命名和分类

(一)限制性内切核酸酶的命名

按照国际命名法,限制性内切核酸酶属于水解酶类.由于限制性酶的数量众多,而且越来越多,并且在同一种菌中发现几种酶.为了避免混淆,1973年Smith和Nathans对内切酶的命名提出建议,1980年,Roberts对限制性酶的命名进行分类和系统化。

限制性酶采用三字母的命名原则,即属名+种名+株名的个一个首字母,再加上序号,将限制性内切核酸酶的命名要点列于表3—1。

表3—1限制性内切核酸酶的命名要点

条目

要点

基本原则

3—4个字母组成, 方式是:

属名+种名+株名+序号

首字母

取属名的第一个字母, 且大写

第二字母

取种名的第一个字母,小写

第三字母

①取种名的第二个字母,小写;②若种名有词头,且已命名过内切酶, 则取词头后的第一字母代替

第四字母

若有株名,株名则作为第四字母,是否大小写, 根据原来的情况而定

顺序号

若在同一菌株中分离了几个限制性内切核酸酶,则按先后顺序冠以I、II、III,.....等

如:

EcoK:

Escherichia coli    K(大肠杆菌K株)

(二)限制性内切核酸酶的分类 

限制性内切核酸酶的作用特点,将它们分为三大类。

1. I类限制性内切核酸酶

I类限制性内切核酸酶的分子量较大,一般在30万道尔顿以上,通常由三个不同的亚基所组成。

例如限制性酶EcoB是由R(135kD),M(62kD)和S(55kD)三种亚基组成的复合酶,这三个亚基分别由不同的基因编码。

全酶的总分子量为449kD,共5个亚基,其中R亚基和M亚基各两分子。

Ⅰ类酶不仅是一种核酸内切酶, 同时在酶分子上还具有甲基化酶和ATPase的活性,所以是具有多种酶活性的复合酶类.作用时除了需要Mg++作辅助因子外,还要求ATP和S腺苷甲硫氨酸(SAM)的存在.Ⅰ类酶具有特异的识别序列,大约15个碱基对。

Ⅰ类酶虽然能够在一定序列上识别DNA分子,并能同DNA分子作用,因其识别DNA后,要朝一个方向或两个方向移动一段距离(通常为1000个碱基左右),并且要形成一个环才能切割DNA(图3-3),所以识别位点和切割位点不一致,产生的片段较大。

 

图3-3 I类酶的作用方式(引自Lewin,1997)

2. Ⅲ类限制性内切核酸酶

Ⅲ类限制性内切核酸酶也是基因工程中不常用的酶,分子量和亚基组成类似于Ⅰ类酶, 作用方式基本同Ⅱ类酶。

如EcoP1是由两个亚基组成,一个亚基(M亚基)负责位点识别和修饰。

另一个亚基(R亚基)具有核酸酶的活性(图3-5).切割DNA时需要ATP,Mg2+,也能被SAM激活,但并非必需.

图3-4 Ⅲ类限制性内切核酸酶(引自Lewin,1997)

3. Ⅱ类限制性内切核酸酶

这类酶的分子量较小。

一般在2—4万道尔顿, 通常由2-4个相同的亚基所组成。

它们的作用底物为双链DNA,极少数Ⅱ类酶也可作用于单链DNA, 或DNA/RNA杂种双链。

这类酶的专一性强,它不仅对酶切点邻近的两个碱基有严格要求, 而且对更远的碱基也有要求,因此, Ⅱ类酶既具有切割位点的专一性, 也具有识别位点的专一性,一般在识别序列内切割。

切割的方式有平切和交错切, 产生平末端的DNA片段或具有突出粘性末端的DNA片段(5'或3’粘性末端)。

作用时需要Mg++作辅助因子,但不需要ATP和SAM。

Ⅱ类酶与对应的甲基化酶在蛋白亚基上尚未发现有什么关系,第一个被分离的Ⅱ类酶是HindⅡ。

三.Ⅱ类限制性内切核酸酶的性质

1。

识别序列的特异性

在3类限制性内切核酸酶中,Ⅱ类限制性内切核酸酶的特异性最强. 

大多数Ⅱ类限制性内切核酸酶识别的序列是回文序列。

如BamHI和BglI都是识别六个碱基的DNA序列(图3-5),都是完全的回文序列.这段序列有两个基本的特征,第一是能够中在间划一个对称轴,两侧的序列两两对称互补配对,第二个特点是两条互补链的5’到3’的序列组成相同,即将一条链旋转1800,则两条链重叠。

图3-5Ⅱ类限制性内切核酸酶识别的回文序列(引自D。

Voet&VoteJ。

G.1995)

2。

限制性内切核酸酶的切割频率与速度

切割频率是指限制性内切核酸酶在某DNA分子中预测的切点数。

由于DNA是由四种类型的单核苷酸组成,假定DNA的碱基组成是均以的,而限制性内切核酸酶的识别位点是随机分布的,那么对于任何一种限制性内切核酸酶的切割频率,理论上应为1/4n,n表示该限制性内切核酸酶识别的碱基数。

如识别4个碱基的限制性内切核酸酶,其切割频率应为每256个碱基有一个识别序列和切点(1/44=1/256),识别5个碱基的限制性内切核酸酶,其切割频率应为每1024个碱基有一个识别序列和切点,余下类推。

实际上因DNA的分布是不均一的,且有大量的重复序列,加上内切酶的切点具有GC倾向,所以实际的频率偏低。

如同是识别6个碱基的限制性内切核酸酶,切割的频率相差很大∶EcoRI4000;BamHI:

6000;SalI:

8000;HpaII:

200.

根据限制性内切酶切割DNA所产生的产物末端,发现限制性内切酶对DNA的切割有两种方式,即平切和交错切。

所谓平切,就是限制性内切酶在DNA双链的相同位置切割DNA分子,这样产生的末端就是平末端.交错切就是限制性内切酶在DNA双链的不同位置切割DNA,产生的DNA片段的末端不是平齐的(图3—6).

图3—6平末端与黏性末端(Hartl,1991)

Ⅱ类限制性内切酶的切割产物有平末端和粘性末端(cohesiveend)。

粘性末端是指DNA分子的两端具有彼此互补的一段突出的单链部分,这一小段单链部分和同一分子的另一端或其它分子末端的单链部分如果互补的话,则能通过互补碱基之间的配对,形成双链。

并在DNA连接酶的作用下, 使同一DNA分子的两端连接成环状,或使两个分子连成一大的线状分子。

不同限制性内切酶切割DNA产生的三种不同类型的末端(表3-3).

表3—3某些限制性内切酶及产生的末端

5'-粘性末端

3’粘性末端

平末端

识别序列

识别序列

识别序列

TaqI

T/CGA

Pst I

CTGCA/G

AluI

AG/CT

ClaI

AT/CGAT

SacI

GAGCT/C

FnuDⅡ

CG/CG

Mbo I

/GATC

SphI

GCATG/C

DpnI

GA/TC

BglⅡ

A/GATCT

BdeI

GGCGC/C

HaeⅢ

GG/CC

BamHI

G/GATCC

ApaI

GGGCC/C

PvuⅡ

CAG/CTG

BclI

T/GATCA

KpnI

GGTAC/C

SmaI

CCC/GGC

HindⅢ

A/AGCTT

 

 

Nae I

GCC/GGC

NcoI

C/CATGG

 

 

Hpa I

GTT/AAC

XmaI

C/CCGGG

 

 

NruI

TCG/CGA

XhoI

C/TCGAG

 

 

BalI

TGG/CCA

EcoR I

G/AATTC

 

 

MstI

TGC/GCA

Sal I

G/TCGAC

 

 

MhaⅢ

TTT/AAA

XbaI

T/CTAGA

 

 

EcoRⅤ

GAT/ATC

基因的分子手术是相当复杂的过程,除了需要限制性内切酶外,还需要其他一些工具酶包括连接酶、DNA聚合酶、RNA聚合酶、核酸酶、末端修饰酶等,对DNA或RNA进行各种各样的修饰。

其中最重要的是连接酶。

第三节基因工程载体

载体(vector,vehicle)的本意就是媒介体,基因工程上的载体是能将分离或合成的基因导入细胞的DNA分子,称为克隆载体.基因工程中有三种主要类型的载体∶质粒DNA、病毒DNA、科斯质粒,其中质粒DNA是最常用的载体,但运载能力低,柯斯质粒是质粒和λ噬菌体DNA的结合体,运载能力最高(图3—7)。

在这三种类型的基础上,根据不同的目的,出现了各种类型的改造载体。

图3-7三种类型的载体(引自Greene,1998)

一、质粒载体

质粒(plasmid)是染色体以外的遗传物质,它是双链闭合环状DNA分子,其大小可从1kb到200kb左右,能够在宿主内利用宿主的酶系统进行复制。

质粒是基因工程的主要载体。

(一)质粒概念

1946—1947年间,Lederberg和Tatum发现了细菌的接合现象,这是细菌的有性繁殖方式.此后不久,便弄清了这种接合是两种不同的交配型(接合型),遗传信息总是从供体(雄性)转移到受体(雌性)。

当两种不同的交配型的细菌相互识别和接合以后,雄性细胞的致育因子,通过细胞的表面结构传递到雌性细胞,这种致育因子后来称为F因子.

1952年,Lederberg指出,细菌的F因子与高等生物细胞质中染色体外的遗传单元极为相似,并正式提出了“质粒"这一名称,以区别于染色体的遗传单元。

一般来讲,质粒是细胞中能够独立复制的复制子,并在细胞分裂时能稳定传递给子代细胞。

虽然质粒对细胞的生存没有影响,但质粒DNA上也有一些编码基因,赋予宿主细胞一些特性.自发现能赋予细菌性别特征的F因子以后,又在大肠杆菌中发现了一种能够编码抗菌物质-—大肠杆菌素的Col质粒,包括ColB,ColV,ColE等。

由这些因子产生的抗菌物质称细菌素(bacleriocin),是细菌所合成的一种蛋白质,对于同种或近缘种具有毒性.合成细菌素的能力和对于细菌素的抗性,都由染色体外的遗传因子所控制。

在1959一1960年间,日本科学家在研究用强效抗生素治疗菌痢患者时,发现病原菌志贺氏菌含有使其同时能抗几种抗生素的基因,而且,这种抗药性基因能以和F因子非常相似的方式转移给其他肠道细菌,这就是抗药因子(R因子).抗药因子(resistance factor)实际上是控制细菌抗药性的一种质粒,能在细菌间转移,由抗药性转移因子和抗药性基因两部分组成。

每个抗药因子上常具有几个抗药性基因. 

(二)质粒DNA的基本性质

大多数质粒DNA是是环状双链的DNA分子.如果两条链都是完整的环,这种质粒DNA分子称为共价闭合环状DNA(covalentlyclosedcircular,CCCDNA)。

CCCDNA有两种构型,超螺旋DNA(supercolied DNA,SCDNA)和松弛的DNA(RelaxedDNA),分别是由DNA促旋酶(DNAgyrase) 和拓朴异构酶(topoisomerase)作用的结果.如果质粒DNA中有一条链是不完整的,那么这种DNA分子就称为开环的(opencircles,OC DNA),开环的DNA通常是由内切酶或机械剪切造成的图3-8)。

从细胞中分离质粒DNA时,质粒DNA常常会转变成超螺旋的构型。

图3-8质粒DNA的三种构型(引自Old&Primrose,1980)

溴化乙啶(ethidium bromide,EtBr)是一种扁平的分子,能够插入到DNA分子的碱基对之间,引起双螺旋的部分解旋,从而改变了DNA的体积和密度.

图3-9相对分子质量相同构型

不同的质粒DNA的琼脂糖凝胶电泳

(引自Old&Primrose, 1980)

由于不同构型的DNA插入EB的量不同,它们在琼脂糖凝胶电泳中的迁移率也不同,CCCDNA的泳动速度最快,OCDNA泳动速度最慢,LDNA居中(图3—9),所以很容易通过凝胶电泳和EB染色的方法将不同构型的DNA分别开来。

(三)质粒分类

根据质粒的拷贝数将质粒分为松弛型质粒和严紧型质粒。

质粒拷贝数(plasmidcopynumbers)是指细胞中单一质粒的份数同染色体数之比值,常用质粒数/每染色体来表示。

不同的质粒在宿主细胞中的拷贝数不同,

松弛型质粒(relaxedplasmid)的复制只受本身的遗传结构的控制,而不受染色体复制机制的制约,因而有较多的拷贝数.通常可达10—15个/每染色体.并且可以在氯霉素作用下进行扩增,有的质粒扩增后,可达到3000/每染色体(ColE1,可由24个达到1000至3000个).这类质粒多半是分子量较小, 不具传递能力的质粒。

基因工程中使用的多是松弛型质粒。

严紧型质粒(stringent plasmid)在寄主细胞内的复制除了受本身的复制机构的控制外,还受染色体的严紧控制,因此拷贝数较少,一般只有1—2个/每染色体。

这种质粒一般不能用氯霉素进行扩增。

严紧型质粒多数是具有自我传递能力的大质粒。

质粒的复制特性是受复制子控制的。

基因工程中使用的质粒多数是松弛性质粒载体。

(四)载体的条件

就克隆一个基因(DNA片段)来说,最简单的质粒载体也必需包括三个部分(图3-10)∶复制区,含有复制起点;选择标记,主要是抗性基因;克隆位点,便于外源DNA的插入。

就复制特性来讲,要求载体必需有独立的复制起点,最好是松弛型复制,这样便于得到大量的拷贝.有时需要有多个复制起点,能够在不同的宿主细胞中复制,扩大宿主范围。

具有合适的克隆位点,便于外源DNA的插入。

克隆位点实际上限制性酶切位点,最好是具有多种限制性内切酶的单切点,这样适应性强,克隆方便,如果一种酶在载体上有多个切点,就会限制该切点的使用.

具有可检测的选择标记, 也是一个重要的基本条件,这种选择标记最好是能够赋予宿主易于检测的表型。

选择标记就是常说的报告基因(report genes),包括抗生素抗性标记,以及一些生化表型的标记。

另外,一个理想的质粒载体必需具有低分子量,因为小分子的质粒DNA易于操作,不容易被损伤,也容易被分离纯化。

一般说小分子量的质粒分子的拷贝数比较高,酶切位点也少。

图3-10质粒载体的基本结

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 总结汇报 > 学习总结

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2