秸秆能源利用技术.docx

上传人:b****8 文档编号:12552576 上传时间:2023-06-06 格式:DOCX 页数:23 大小:295.70KB
下载 相关 举报
秸秆能源利用技术.docx_第1页
第1页 / 共23页
秸秆能源利用技术.docx_第2页
第2页 / 共23页
秸秆能源利用技术.docx_第3页
第3页 / 共23页
秸秆能源利用技术.docx_第4页
第4页 / 共23页
秸秆能源利用技术.docx_第5页
第5页 / 共23页
秸秆能源利用技术.docx_第6页
第6页 / 共23页
秸秆能源利用技术.docx_第7页
第7页 / 共23页
秸秆能源利用技术.docx_第8页
第8页 / 共23页
秸秆能源利用技术.docx_第9页
第9页 / 共23页
秸秆能源利用技术.docx_第10页
第10页 / 共23页
秸秆能源利用技术.docx_第11页
第11页 / 共23页
秸秆能源利用技术.docx_第12页
第12页 / 共23页
秸秆能源利用技术.docx_第13页
第13页 / 共23页
秸秆能源利用技术.docx_第14页
第14页 / 共23页
秸秆能源利用技术.docx_第15页
第15页 / 共23页
秸秆能源利用技术.docx_第16页
第16页 / 共23页
秸秆能源利用技术.docx_第17页
第17页 / 共23页
秸秆能源利用技术.docx_第18页
第18页 / 共23页
秸秆能源利用技术.docx_第19页
第19页 / 共23页
秸秆能源利用技术.docx_第20页
第20页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

秸秆能源利用技术.docx

《秸秆能源利用技术.docx》由会员分享,可在线阅读,更多相关《秸秆能源利用技术.docx(23页珍藏版)》请在冰点文库上搜索。

秸秆能源利用技术.docx

秸秆能源利用技术

秸秆能源利用技术

   农作物秸秆资源具有多功能性,可用作燃料、饲料、肥料、生物基料、工业原料等,与广大农民的生活和生产息息相关。

高效开发和集约利用农作物秸秆资源,有利于改善农村生产生活条件,促进农业增效和农民增收,对发展循环经济,构建资源节约型社会,推进社会主义新农村建设等具有重要意义。

被人们称之为改善农村生产生活条件的清洁工程,建立资源节约型社会的能源工程,减轻大气污染的环境工程,优化畜牧业结构的节粮工程,提高耕地综合生产能力的沃土工程,实现农业可持续发展的生态工程,增加农民收入的富民工程。

  据不完全统计,我国每年主要农作物秸秆产量6亿吨以上,其中直接还田30%,过腹还田22%,剩余约3亿吨左右可作为能源加以开发与利用,折合标准煤1.5亿吨。

农作物秸秆能源转化的主要方式有直接燃烧(包括通过省柴灶、节能炕、节煤炉燃烧及直燃发电)、•固化燃料(固体成型为颗粒、块状和棒状燃料)、气化燃料(包括生物质燃气、沼气)和液化燃料(包括燃料乙醇和生物原油)等。

  农作物秸秆由于具有能量密度低、热值不高、原料种类繁多、难以收集运输等特性,在能源化利用过程中存在许多技术和管理方面的问题与障碍。

比如,秸秆热解气化焦油处理不彻底,热值过低;秸秆生物气化配套设备有待进一步开发和完善;秸秆致密成型设备的关键部件寿命短,影响生产能力等,这些问题急需认真研究解决。

   多年来,党中央和国务院一直非常重视农作物秸秆能源化利用工作,制定了相应政策措施,加大了资金投入,成效显著,受到了广大农民的热烈欢迎。

到2005年底,已累计推广省柴节煤炉灶1.9亿户,普及率达到70%以上,热效率比20世纪80年代初期提高了10个百分点;推广节能炕2000万铺,节约了大量的生物质资源,有效缓解了农村能源的紧张局面。

已经建设了秸秆集中供气站539处,建立了一批秸秆固化成型示范点。

截至2006年底,由国家和地方核准秸秆规模化发电项目近50处,总装机l500兆瓦,其中,山东单县、江苏宿迁和河北威县3座发电站已投产发电,总装机容量8万千瓦。

 

  虽然,我国在农作物秸秆能源化利用方面取得了一定的成绩,但是,长期以来人们一直把秸秆看作是农业的副产品,没有给予足够的重视,利用率低,浪费严重。

随着现代农业和现代加工技术的发展,对农作物秸秆的认识应有一个转变,秸秆和籽实一样都是重要的农产品。

加强农作物秸秆能源化利用,对加快农业农村经济发展具有重要作用。

  我国作为一个发展中的农业大国,以家庭承包经营为主体的农村社会结构,决定了农作物秸秆利用必须立足于分散收集、小规模生产、就地利用的原则,走具有中国特色的秸秆能源化开发利用之路。

今后一个时期,要对可获得农作物秸秆资源总量以及可利用资源的种类、分布、产量、利用途径等情况全面深入系统地进行调研,在此基础上,对秸秆资源进行全面、科学的评价,围绕拓展农业功能、发展循环农业、促进农民增收,充分发挥资源和技术优势,通过加强科技创新、加大政策扶持、强化体系建设,引导、整合和利用社会力量广泛参与,在广大农村地区推广高效低排生物质炉、省柴灶、节能炕等农村生活节能技术和秸秆沼气技术,示范建设秸秆气化集中供气站和秸秆固化示范点,为农民提供方,燃料,提高农业资源利用效率,降低能源消耗,优化能源;少污染排放,为建设社会主义新农村、保障国家能源安全态环境作出积极贡献。

一、秸秆生物气化

   秸秆生物气化技术又称秸秆沼气技术,是指以秸秆为原料,经微生物厌氧发酵作用生产可燃气体——沼气的秸秆技术。

采用该项技术处理秸秆,能生产农村急需的高品质源,还能生产有机肥料,转化率高,经济效益好。

按处理工艺可分为干法和湿法发酵两类,按规模可分为户用和工程化两类。

   20世纪70年代末至80年代初,由于养殖业不发达,缺少粪便,户用沼气池普遍采用一次性进出料的“大换料”干法发酵工艺,秸秆用量在50%左右。

目前户用沼气池基本采用人畜粪便为原料、连续进出料的湿法发酵工艺,基本不用秸秆。

工程化和秸秆生物气化技术目前尚未进入大规模推广阶段。

   

(一)国内外技术研发现状

   1.国外技术研发现状 由于秸秆含有大量的纤维素、半纤维素和木质素,并相互交织在一起,表面还包裹了一层蜡质,起支撑、保护及避免微生物侵袭的作用,从而使秸秆降解极其缓慢,导致利用秸秆生产沼气存在启动慢、产气率低、结壳严重等问题。

国外在秸秆的预处理、秸秆厌氧发酵工艺及产业化装备方面做了研究。

   

(1)秸秆预处理研究。

    

   ①化学法。

Gh.HassanDar等使用l%浓度的氨水(NH4OH)预处理秸秆7天后,与禽畜粪便混合,厌氧消化能力和稳定性提高高。

RuihongZhang等发现氨水预处理具有较多的优点,通过添加氨水,既增加了氮源,又无氨水排放。

   ②物理法。

RuihongZhang等采用研磨和切碎两种物理预处理方法处理稻草,研磨比切碎的预处理方法在沼气产量上高12.5%。

   ③生物法。

A.Ghosh等使用白腐真菌(Phanerochaetechry—sosporium)和褐腐真菌(Polyporusostrei/ormis)预处理秸秆,沼气产量分别提高了34.73%~46.19%和21.12%~31.94%。

   

(2)秸秆厌氧发酵工艺试验。

美国康奈尔大学的W.J.Jewell等在20世纪80年代初最早完成了多种农作物秸秆干发酵的工艺、反应器等系统研究,研究认为秸秆厌氧发酵产沼气是可行的,秸秆利用率可达50%。

   (3)产业化设施装备的试验。

德国于20世纪90年代起,开始进行以秸秆为主要原料的沼气间歇干法厌氧发酵技术及工业级装备的研发。

目前欧洲可用于秸秆厌氧发酵处理的工艺主要有四种类型:

车库型、气袋型、渗出液存贮桶型和干湿联合型。

美国加州大学DAVIS分校研制的贮罐型装置也可用于秸秆厌氧发酵处理。

2002年,德国BIOFERM公司、BEKON公司等厂家生产的车库型工业级装备已投入实际运行,在控制、安全等方面均较完备,但所需投资巨大。

   在原料方面,德国农场3000多个沼气工程中,超过60%的工程采用玉米青贮秸秆与畜禽粪便混合厌氧发酵来生产沼气并用来发电,玉米青贮秸秆是指栽种的玉米在成熟前2周左右收割、粉碎和堆放,青贮秸秆添加量一般为发酵原料的20%左右。

这些工程全部采用热电联产技术,中温(35℃)发酵占90%以上,因此容积产气率较高,一般都在0.8立方米/(立方米•天)以上。

   在全世界能源日益短缺和环境持续恶化的情况下,发达国家纷纷投入巨资,试图在秸秆生物沼气技术的产业化方面取得突破。

而取得产业化突破的关键是经济和技术都可行的工业级谨施、装备。

因此,研究适用的规模化秸秆干法厌氧发酵设施、装备是当前秸秆生物沼气技术的发展趋势。

   2.我国技术研发现状 从20世纪80年代起,国内科研院所、大专院校和相关企业对秸秆沼气干法厌氧发酵技术进行了大量研究,如中国科学院成都生物研究所、辽宁省能源研究所、农业部规划设计研究院、山东省能源研究所、吉林省农业科学院土壤肥料研究所、宁夏回族自治区农业科学院土壤肥料研究所、中国科学院工程研究所、北京化工大学、武汉大学、清华大学、华中科技大学、华中农业大学、北京合百意生态能源科技开发有限公司、天津市同瑞达环保设备有限公司等,并取得了大量科技成果。

  

(1)化学法。

中国科学院成都生物研究所使用2%的石灰澄清液堆沤秸秆,再进行粪草发酵,取得了显著效果。

北京化工大学提出通过氢氧化钠(NaOH)化学处理以改善玉米秸秆的可生物消化性能、提高玉米秸秆厌氧消化产气量的方法,与未处理玉米秸秆相比,单位总固体含量(TS)的产气率提高了13.1%~48.3%。

   

(2)物理法。

中国科学院工程研究所研究了气爆法预处理秸秆生产沼气的方法,并利用气爆预处理的秸秆经多级发酵工艺进行秸秆沼气厌氧发酵研究。

   (3)生物法。

辽宁省能源研究所利用白腐菌对玉米秸秆中木质纤维素进行生物降解,研究木质纤维素的变化规律,确定了白腐菌对玉米秸秆生物降解预处理的适宜条件。

   中国科学院成都生物研究所开发了高效复合菌剂,并与北京合百意公司合作,进行了复合菌剂预处理秸秆产沼气生产性试验研究,8立方米沼气池对比试验研究表明,在前30天产气阶段内,经过预处理的秸秆比未预处理的秸秆,产气率提高40%以上,并且产气启动时间缩短一半,沼气中甲烷含量为60%左右。

发酵后的物料不结壳,较为松散。

2003年中国科学院成都生物研究所与北京合百意生态能源科技开发有限公司在北京顺义建成秸秆产沼气示范基地和年产1200吨秸秆产沼气菌剂的生产车间,合作生产秸秆预处理产沼气复合菌剂,在全国10多个省、自治区、直辖的50多个县进行了示范应用,并在江西吉安等地进行了规模化推广。

(二)工艺流程

1.户用秸秆沼气 通过对不同的秸秆进行粉碎度、粉碎方式、留水分和预处理时间等筛选实验研究,取得了大量有实用价值的技术参数,确立了复合菌剂预处理秸秆的工艺技术流程,如图1—1所示。

 

  图中线路1和2两种预处理工艺的不同之处为,一个在池内进生物预处理,而另一个在池外。

其余工艺完全相同,经预处理的秸秆产气效果相当。

   

(1)粉碎。

粉碎机粉碎秸秆(稻草、麦草等),粒度10毫米。

   

(2)温润。

粉碎秸秆加水(最好是粪水)润湿,每100千克秸秆加水量为100~120千克。

润湿时间为1天左右。

   (3)混合。

将润湿好的秸秆加水(最好是粪水),与补充水分后的复合菌剂和碳酸氢铵(简称碳铵)混合。

8立方米沼气池菌剂用量l千克,碳铵用量5千克,加水量为100千克,秸秆补加到185—200千克(用手捏紧,有少量的水滴下,保证含水率为65%~70%)。

肉眼观察以地面不能有水流出为止。

   (4)生物预处理。

池外预处理时,将拌匀的秸秆收堆,宽度为1.2~1.5米,高度为l~1.5米(按季节不同而异)。

生物预处理时间夏季3~4天,冬季4~6天。

一般情况下,当堆内温度达到50~C并维持3天、堆内秸秆长有白色菌丝时即人池。

池内预处理时,可人无水的沼气池进行生物预处理,生物预处理时适当踏实,池口要覆盖。

   (5)接种。

将生物预处理好的秸秆人池,加入接种物,同时加入碳酸氢铵(无粪便的情况下)。

加入接种物的量为料容的20%~30%,碳酸氢铵量为8~10千克(有粪便时可不加或少加),加水量为沼气池的常规容量(总固体浓度为6%一8%)。

若采用干发酵工艺,秸秆经生物预处理后不需加水,加接种物即可。

   (6)启动。

密封沼气池池口,然后连续放气1~3天。

从放气的第二天开始试火,直至能点燃并且火苗稳定即可正常使用。

   2.大中型秸秆沼气(覆膜开放槽干法厌氧发酵技术工艺流程)

   

(1)基本原理。

覆膜开放槽干法厌氧发酵技术的核心是覆膜开放槽生物反应器:

采用独特的软管充气压力密封方式,使柔性的膜覆盖材料与刚性的槽体快速密封或解除密封,从而快速建立固体厌氧发酵环境或快速转换成好氧发酵环境,使发酵槽一槽多用。

   

(2)工艺流程。

首先将物料堆人发酵槽,进行好氧预发酵,待物料升温后,将厌氧旧料或由专用菌种制备系统生产的菌种混入;然后在发酵槽上覆盖柔性密封膜,使物料在密闭条件下厌氧发酵,生产沼气;厌氧期结束时,将膜内沼气抽空,并收起柔性密封膜,剩余物料再进行好氧脱水处理,生产有机肥料。

整个处理过程分三个阶段,即好氧预处理升温一厌氧发酵生产沼气一好氧发酵生产有机肥料。

   利用太阳能和生物能使物料升温,利用深堆层物料的自保温性能和加强生物反应器保温来维持中温厌氧发酵温度,同时设计燃烧沼气的加热系统用于沼气工程冬季稳定运行。

用翻搅机将厌氧菌种与物料混合均匀,好氧发酵阶段通过翻搅为物料充氧。

   (三)发展潜力及趋势

   该项技术及产品的应用,具有充足的资源作保障,同时秸秆生物沼气产生的沼渣、沼液具有高肥效、低成本的优势,对改善植物与环境的互作关系、增强植物的抗逆能力、提高作物的产量、改进农产品品质等具有重要作用。

   秸秆生物沼气技术及菌剂产品等适用于各类户用沼气池及大中型沼气工程,可在全国农村地区广泛推广使用。

 (四)效益分析

 秸秆生物气化为秸秆资源的综合利用开辟了一条新的途径,既获取了优质清洁能源,又获取了高效低廉的有机肥料。

若将1.85亿吨废弃秸秆用于产沼气,按每千克秸秆(干重)产0.3立方米沼气计,则每年可产生沼气555亿立方米,为1.1亿户农民常年提供生活燃料[按500立方米/(户•年)计),年减排C022694万吨(碳)。

每年可产生1.1亿吨有机固体肥料(含水率约20%),为近3000公顷农田提供优质有机肥料。

二、秸秆热解气化

   秸秆热解气化技术是近年来发展的一项较新的秸秆利用技术,即将秸秆转化为气体燃料的热化学过程。

秸秆在气化反应器中氧气不足的条件下发生部分燃烧,以提供气化吸热反应所需的热量,使秸秆在700—850~C左右的气化温度下发生热解气化反应,转化为含H2、CO和低分子烃类的可燃气体。

秸秆热解气化得到的可燃气体既可以直接作为锅炉燃料供热,又可以经过除尘、除焦、冷却等净化处理后,为燃气用户集中供气,或者驱动燃气轮发电机或燃气内燃发电机发电。

(一)国内外技术研发现状

1.国外技术研发现状 国外生物质气化技术研究主要集中在气化发电、合成甲醇以及热电联产等方面。

美国及欧洲等发达国家农业生产以农场为主,生物质资源集中,合同收购额大,并且由于其森林覆盖率高,生物质资源多为木材以及林业加工废弃物,其生物质气化朝着规模化、自动化、集成化方向发展,但采取的工艺复杂,造价昂贵。

目前应用的主要有生物质气化联合循环发电(B/IC,CC)以及热电联产(CHP)等,发电效率和综合热效率都较高。

欧美发达国家对生物质气化技术也进行了多年的研究,主要将其用于发电,B/IGCC是应用比较广泛的生物质气化发电技术。

目前国际上有很多发达国家开展这方面研究并建成多个兆瓦级示范工程,如美国Battelle(63兆瓦)和夏威夷(6兆瓦)项目,欧洲英国(8兆瓦)、芬兰(6兆瓦)以及瑞典Varnamo示范工程等。

这些示范工程的原料以木材和经过预处理成型后的生物质原料为主。

采用IGCC技术的生物质发电系统主要问题是系统造价高。

以意大利12兆瓦的IC,CC示范项目为例,发电效率约为31.7%,但建设成本高达25000元/千瓦,发电成本约L2元/千瓦时,实用性很差。

近年来,发达国家也研究了其他技术路线,如比利时和奥地利的生物质气化外燃式燃气轮机发电技术,美国的斯特林发动机发电技术,在提高发电效率的前提下降低生产成本,但技术仍未成熟,成本依然很高,尚处于示范阶段。

   西方国家对基于固定床的生物质气化发电系统也进行了研究,但低密度生物质的固定床气化发电面临着许多技术难题。

目前,意大利AnticheTerreToscana和芬兰技术研究中心正在进行低密度生物质固定床气化技术的研究,并且已经被列入欧盟的JOULE/THERMIE计划中。

在热电联产方面,瑞典、丹麦等北欧国家已成功实施了生物质气化的区域热电联产计划,使生物质在提供高品位电能的同时满足供热的要求。

瑞典的地区供热和热电联产,生物质能源占到所消耗能源的26%;奥地利建立了燃烧木材剩余物的区域供电、供热系统,目前已有容量为1~2兆瓦的区域供热站近100个。

   2.我国技术研发现状 我国目前生物质气化应用最广泛的领域是集中供气以及中小型气化发电,少量用于工业锅炉供热。

农村集中供气工程解决了农作物秸秆的焚烧和炊事用能问题,而生物质气化发电主要针对具有大量生物质废弃物的木材加工厂、碾米厂等工业企业。

我国的秸秆气化主要用于供热、供气、发电及化学品合成。

   

(1)秸秆气化供热。

秸秆气化供热是指秸秆经过气化炉气化后,生成的燃气送人下一级燃烧器中燃烧,为终端用户提供热能。

秸秆气化供热技术广泛应用于区域供热和木材、谷物等农副产品的烘干等,与常规木材烘干技术相比具有升温快、火力强、干燥质量好的优点,并能缩短烘干周期,降低成本。

   

(2)秸秆气化供气。

秸秆气化供气是指气化炉产生的生物质燃气通过相应的配套设备为居民提供炊事用气。

秸秆气化供气又分为集中供气和单独供气两种类型。

   ①秸秆气化集中供气。

生物质气化集中供气系统是20世纪90年代以来在我国发展起来的一项新的生物质能源利用技术。

它是在农村的一个村或组建立一个生物质气化站,将生物质经气化炉气化后转变成燃气,通过输气管网输送和分配到用户,系统规模一般为数十户至数百户。

目前,我国已广泛推广利用生物质气化技术建设集中供气系统,以满足农村居民炊事和采暖用气。

   在秸秆气化集中供气系统中,气化炉的选用是根据不同的用气规模来确定的,如果供气户数较少,选用固定床气化炉;如果供气户数多(一般多于1000户),则使用流化床气化炉更好。

秸秆燃气的炉具与普通的城市煤气炉具有所区别,国内此类炉具的生产厂家也较多,效果也较好,可以满足用户要求。

   ②户用秸秆气化供气。

该种方式为一家一户的农村居民使用,户用小型秸秆气化炉,产生的燃气直接接人炉灶使用,系统具有体积小、投资少的优点。

但也有显著的缺点:

由于气化炉与灶直接相连,生物质燃气未得到任何净化处理,因而灶具上连接管及气化炉都有焦油渗出,卫生很差,且易堵塞连接管及灶具;因气化炉较小,气化条件不易控制,产出气体中可燃气成分质量不稳,并且不连续,影响燃用,甚至有安全问题;从点火至产气需要有一定的启动时间,增加了劳动时间,而且该段时间内烟气排放也是个问题。

   ③秸秆气化发电。

我国在生物质气化方面有一定的基础。

早在20世纪60年代初就开展了这方面的研究工作,近20年来加快了生物质气化发电技术的进一步研究,开发的中小规模气化发电系统具有投资少、原料适应性和规模灵活性好等特点,已研制成功的中小型生物质气化发电设备功率从几千瓦到5000千瓦,如表l—1所示。

 

  气化炉的结构有层式下吸式、开心式、下吸式和常压循环流化床气化炉等,采用单燃料气体内燃机和双燃料内燃机,单机最大功率已达500千瓦。

   农业废弃物气化发电技术经过近年来的研究、探索,分别解决了流化床气化、焦油裂解、低热值燃气机组改造、焦油污水处理和系统控制及优化等各种核心技术,在技术的产品化和标准化研究、提高农业废弃物气化发电站的成套性和实用性方面取得较大进展,形成了具有我国特色的农业废弃物能源利用方式。

我国的生物质气化发电正在向产业规模化方向发展,在国内推广很快,而且设备还出口到泰国、缅甸、老挝等东南亚国家和地区。

目前已签订的中小型农业废弃物气化发电项目总装机容量40兆瓦以上,成为国际上应用最多的中小型生物质气化发电系统。

   我国的生物质IGCC示范系统正在建设之中,装机容量为4~6兆瓦。

该技术与国外先进的同类技术相当,而设备已全部实现国产化,投资不到国外的2/3,运行成本比国外低50%左右。

而目前已有应用的秸秆直燃发电要求生物质资源集中,数量巨大,在大规模

利用下才有明显的经济效益。

以前我国该技术应用发展较少,国内近期开始从发达国家引进该技术,但项目投资成本高,进口技术的投资成本在1.1万元/千瓦以上,是我国气化发电的1.5倍以上。

   ④秸秆气化合成化学品。

目前,通过使用催化剂将CO和H:

合成为甲醇、二甲醚的技术已经比较成熟,生物质气化得到的气体中含有CO和H2成分,所以,在一定条件下用生物质气化得到的气体作为合成气原料生产甲醇、二甲醚,为运输业提供代用燃料是可行的,而且这已成为目前研究的重点。

美国国家可再生能源实验室正研究用此法合成甲醇,目标是使合成的甲醇成本低于车用汽油。

我国在利用生物质气化合成气制甲醇、二甲醚方面也进行了探索性实验研究。

(二)工艺流程

   1.秸秆气化供热 秸秆气化供热系统包括气化炉、滤清器、燃烧器、混合换热器及终端装置,该系统的特点是经过气化炉产生的可燃气可在下一级燃气锅炉等燃烧器中直接燃烧,因而通常不需要高质量的气体净化和冷却系统,系统相对简单,热利用率高。

以上吸式气化炉为主。

见图1—2。

 

 2.秸秆气化供气

 

(1)秸秆气化集中供气。

生物质气化集中供气的基本模式如图l—3所示,整个系统由燃气发生系统、燃气输配系统和用户燃气系统组成。

(2)户用秸秆气化供气。

该系统(见图1—4)产气量为8~10立方米/时,热量41.9—50.2兆焦/时,燃气热值>46兆焦/立方米,系统总效率可达30%~40%。

 3.秸秆气化发电 

 

(1)小规模秸秆气化发电系统。

小规模气化发电系统功率在2~160千瓦之间,气化炉几乎都是下吸式固定床气化炉,因为这种炉具产出燃气焦油含量较低,净化系统相对简单,对环境造成的危害较小。

采用内燃发电机组,设备紧凑,运行方便,适合照明或小型电机拖动。

见图1—5。

 

(2)中型秸秆气化发电系统。

目前系统功率一般在500~2000千瓦,由于气化容量较大,气化炉采用流化床或循环流化床形式,冷却过滤系统比小型系统完善,采用催化裂解的方法使90%以上的焦油裂解成永久性气体,发电设备为内燃机发电机组,用于并网发电或小工业用电,也适合秸秆较多的区域进行发电自供。

见图l一6。

 

  (3)大型秸秆气化发电系统。

气化炉为循环流化床或加压流化床,净化方式采用陶瓷滤芯的过滤器、焦油裂解炉及焦油水洗塔。

原料处理量大,自动化程度高,系统效率高,适合工业化生产。

见图1—7。

4.秸秆气化合成化学品 以氧气或水蒸气为气化剂,气化炉中产生的中热值可燃气,除去其中的木焦油等有机物,压缩除去C02、N:

、CH+及其他碳氢化合物,再在一定压力下,使CO与H:

O反应生成H:

,调整CO和H2比例为l;2混合气,导人合成反应器,经特定催化剂催化合成甲醇或二甲醚。

见图1—8。

 

 (三)发展潜力及趋势

   利用生物质气化技术将生物质原料转化为洁净且便于输送、利用的高品位能源是利用生物质能源的一种有效途径,也是替代常规能源的有效方法。

据统计,大部分生物质作为能源利用,基本上还是直接获取热能的粗放型燃烧,由于生物质的燃烧特性较差,有效热利用率很低,污染严重。

大力推广生物质热解气化技术,提高能源综合利用效率,减少污染,对新农村建设,构建节约型社会,保障能源供应,提高农民生活质量、健康水平和文明程度,具有重要的现实意义,并且可操作性强。

  我国已经开发出多种固定床和流化床气化炉,以秸秆、木屑、稻壳、树枝为原料生产燃气。

用于木材和农副产品烘干的有800余台,村镇集中供气系统年产生物质燃气2000万立方米,兆瓦级生物质气化发电系统已推广20余套。

 (四)效益分析

  秸秆热解气化项目的应用和实施,符合我国高速发展的经济形势,大大降低煤、天然气等化石能源的使用量,减少环境危害,从长远的能源发展战略角度出发,是改变我国能源结构、实现科学用能的重大举措,对拓展生物质能利用技术的应用范围和领域,推动可再生能源行业的技术进步具有重要战略意义。

同时,生物质气化项目的实施,也具有显著的社会、环境、经济、能源效益。

   1.集中供气 该系统建设以自然村为单位。

选择较典型的200户规模为例进行系统经济性分析。

设计每户每天消费5立方米燃气,峰荷时要保证供应每户每小时不低于2立方米的气,并要求能24小时稳定供气。

系统选用XFF—2000型气化机组和250立方米容积的气柜。

   2.秸秆气化发电 由于秸秆原料的成本中,运输和贮存保管的费用占了很大比例(30%~50%),所以在计算发电成本时,不同规模的秸秆气化发电站原料的运输和管理成本都会明显增加。

为此,对于不同规模的电站,所采用的原料价格作不同的设定。

三、生物质固化成型燃料

  生物质固化成型燃料技术是在一定温度和压力作用下,将各类分散的、没有一定形状的农林生物质经过收集、干燥、粉碎等预处理后,利用特殊的生物质固化成型设备

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 农林牧渔 > 林学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2