桥梁裂缝产生原因浅析.docx

上传人:b****1 文档编号:1276071 上传时间:2023-04-30 格式:DOCX 页数:14 大小:23.95KB
下载 相关 举报
桥梁裂缝产生原因浅析.docx_第1页
第1页 / 共14页
桥梁裂缝产生原因浅析.docx_第2页
第2页 / 共14页
桥梁裂缝产生原因浅析.docx_第3页
第3页 / 共14页
桥梁裂缝产生原因浅析.docx_第4页
第4页 / 共14页
桥梁裂缝产生原因浅析.docx_第5页
第5页 / 共14页
桥梁裂缝产生原因浅析.docx_第6页
第6页 / 共14页
桥梁裂缝产生原因浅析.docx_第7页
第7页 / 共14页
桥梁裂缝产生原因浅析.docx_第8页
第8页 / 共14页
桥梁裂缝产生原因浅析.docx_第9页
第9页 / 共14页
桥梁裂缝产生原因浅析.docx_第10页
第10页 / 共14页
桥梁裂缝产生原因浅析.docx_第11页
第11页 / 共14页
桥梁裂缝产生原因浅析.docx_第12页
第12页 / 共14页
桥梁裂缝产生原因浅析.docx_第13页
第13页 / 共14页
桥梁裂缝产生原因浅析.docx_第14页
第14页 / 共14页
亲,该文档总共14页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

桥梁裂缝产生原因浅析.docx

《桥梁裂缝产生原因浅析.docx》由会员分享,可在线阅读,更多相关《桥梁裂缝产生原因浅析.docx(14页珍藏版)》请在冰点文库上搜索。

桥梁裂缝产生原因浅析.docx

桥梁裂缝产生原因浅析

 

桥梁裂缝产生原因浅析

 

中铁十八局集团三公司:

李金龙

2013年4月20日

 

桥梁裂缝产生原因浅析

【摘要】:

为了进一步加强对混凝土桥梁裂缝的认识,本文归纳总结了混凝土桥梁裂缝的种类,分析了由荷载、温度变化、收缩、钢筋锈蚀等引起裂缝产生的原因,为桥梁工程技术人员提供了参考依据。

【关键词】:

桥梁混凝土裂缝

混凝土结构裂缝的成因复杂而繁多,甚至多种因素相互影响,但每一天裂缝均有其产生的一种或几种主要原因。

混凝土桥梁裂缝的种类,就其产生的原因,大致可划分为以下几种:

1、荷载引起的裂缝

混凝土桥梁在常规静、动荷载和次应力下产生的裂缝称荷载裂缝,归纳起来主要有主、次应力裂缝两种。

1.1直接应力裂缝

直接应力裂缝是由外荷载引起的直接应力产生的裂缝。

裂缝产生的原因有:

(1)设计计算阶段计算或部分漏算,计算模型不合理;结构受力假设与实际

受力不符;荷载少算或漏算;内里与配筋计算错误;结构安全系数不够;结构设计时不考虑施工的可能性;设计断面不足;钢筋设置偏少或布置错误;结构刚度不够;构造处理不当,设计图纸交代不清等。

(2)施工阶段:

不加限制地堆放施工机具、材料;不了解预制结构受力特点;

随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式。

(3)使用阶段:

超出设计荷载的重型车辆过桥,受车辆、船舶的撞击,发生

大风、大雪、地震、爆炸等。

1.2次应力裂缝

次应力裂缝是外荷载引起的次生应力产生裂缝。

裂缝产生的原因有:

(1)在设计荷载作用下,由于结构物的实际工作状态同常规计算有出入或计

算未考虑,从而在某些部位产生次应力导致结构开裂。

如两铰拱桥拱脚设计时常采用X型钢筋、同时消减该处断面尺寸,理论上该处不存在弯矩,但实际上该铰仍然抗弯,因而出现裂缝。

(2)桥梁结构中经常需要凿槽、开洞、设置牛腿等,在常规计算中难以用准

确的图示进行模拟计算,一般根据经验设置受力钢筋。

但受力构件挖空后,在空洞附近产生应力集中。

因此若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。

实际工程中,次应力裂缝是产生荷载裂缝的最常见原因。

次应力裂缝多属于张拉、劈裂、剪切性质,次应力裂缝也是由荷载引起,仅是按常规一般不计算,但随着现代计算手段的不断完善,次应力裂缝也是可以做到合理验算的。

例如:

现在对预应力、徐变等的二次应力,不少平面杆系有限元程序均可正确计算,但在40年前却比较困难。

在设计上,应注意避免结构突变(或断面突变),当不能回避时,应做局部处理,如转角处做圆角,突变处做渐变过渡,同时加强构造配筋,转角处增配斜向配筋,对于较大孔洞有条件时可在周边设置护角角钢。

荷载裂缝特征依荷载不同而异呈现不同的特点。

这类特点多出现在受拉区,受剪区或振动严重部位,但必须指出,如果受压区出现起皮或有受压方向的短裂缝,往往是结构达到承载封极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。

根据结构不同受力方式,产生的裂缝特征如下:

1、中心受拉。

裂缝贯穿横截面,间距载体相等,且垂直于受力方向。

采用螺纹钢筋时,裂缝之间出现位于钢筋附近的次裂缝。

2、中心受压。

沿构件出现平行于受力方向的短而而密的平行裂缝。

3、受弯。

弯矩最大截面附近从受拉区边沿出现与受拉方向的垂直裂

缝。

并逐渐向中合轴方向发展。

采用螺纹钢筋时,裂缝间可见较短的裂缝。

当结构配筋较少时,裂缝少而宽,结构可能发生脆性破坏。

4、大偏心受压。

大偏心受压和受拉区配筋较少的小偏心受压构件,类

似于受弯构件。

5、小偏心受压。

小偏心受压和受拉区配筋较多的大偏心受压构件,类

似于中心受压构件。

6、受剪。

当箍筋太密时发生斜压破坏,沿梁端腹部出现大于450方向

的斜裂缝,当箍筋适当时发生剪压破坏,沿梁端中下部出现约450方向的斜裂缝。

7、受扭。

构件腹部先出现多条450方向的斜裂缝,并向相邻面以螺旋

方向展开方。

8、受冲切,沿柱头板内四侧发生约450方向的斜面拉裂,形成冲切面。

9、局部受压。

在局部受压区出现与压力方向大致平行的多条短裂缝。

2、温度变化引起的裂缝

混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土

将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。

在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。

温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。

引起温度变化主要原因有:

(1)年温差。

一年中四季温差不断变化,但变化相对缓慢,对桥梁结构

的影响主要是导致桥梁的纵向位移,一般可通过桥面伸缩缝、支座位移或设置柔性墩等构造措施相协调,只有结构的位移受到限制时才会引起温度裂缝,例如拱桥、钢架桥等。

我国年温差一般以一月和七月月平均温度作为变化幅度。

考虑到混凝土的蠕变特性,年温差内力计算时混凝土弹性模量应考虑折减。

(2)日照。

桥面板、主梁或桥墩侧面受太阳暴晒后,温度明显高于其它部

位,温度梯度呈非线形分布。

由于受到自身约束作用,导致局部拉应力较大,出现裂缝。

日照和下述骤然降温是导致结构温度裂缝的最常见原因。

(3)骤然降温。

突降大雨,冷空气侵袭,日落等可导致结构物外表面温度

突然下降,但因内部温度变化相对较慢而产生温度梯度。

日照和骤然降温内应力计算时可采用设计规范和参考实际桥梁资料进行,混凝土弹性模量不考虑折减。

(4)水化热。

出现在施工过程中,大体积混凝土(厚度超过2.0米)浇筑

之后由于水泥水化放热,导致内部温度很高,内外温差太大,致使表面出现裂缝。

施工中应根据实际情况尽量选择水化热低的水泥品种,限制水泥单位用量,减少骨料入模温度,降低内外温差,并缓释降温,必要时可采取循环冷却系统进行内部散热,或采帮薄层连续浇筑以加快散热。

(5)蒸汽养护或冬季施工措施不当,混凝土骤冷骤热,内外温度不均,易

出现裂缝。

(6)预制T梁之间横隔板安装时,支座预埋钢板与调平钢板焊接时,若焊

接措施不当,铁板附近混凝土容易烧伤开裂。

采用电热泪盈眶张拉法张拉预应力构件时,预应力钢材温度可升高至3500C,混凝土构件也容易开裂.试验研究表明,由火灾等原因引起高温烧伤的混凝土强度随温度的升高而明显降低,钢筋与混凝土的粘结力随之下降,混凝土温度达到3000C后抗拉强度下降50%,抗菌素压强度下降60%,光源钢筋与混凝土的粘结力下降80%,由于受热,混凝土内游离水大量蒸发也可产生急剧收缩。

3、收缩引起的裂缝

在实际工程中,混凝土因收缩引起的裂缝是最常见的。

在混凝土收缩种

类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和碳化收缩。

塑性收缩。

发生在施工过程中、混凝土浇筑后4-5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。

塑性收缩所产生的量很大可达1%左右。

在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。

在构件竖

向变截面处如T梁、箱梁腹板与顶板交接处,因硬化前沉积不均匀将发生表面顺腹板方向裂缝。

为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。

缩水收缩(干缩)混凝土结硬后,随着表面水分逐步蒸发,温度逐步降低,

混凝土体积减小,称为缩水收缩(干缩)。

因混凝土表层水分损失快,内部损失慢,因此产生表面收缩打、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表层混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。

混凝土硬化后收缩主要就是缩水收缩。

如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。

自生收缩。

自生收缩是混凝土在硬化过程中,水泥与水发生水化反映,

这种收缩与外界湿度无关,且可以是正的(即收缩,普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。

碳化收缩。

大气中的二氧化碳与水泥的水化物发生化学反映引起的收缩

变形。

碳化收缩只有在湿度50%左右才能发生,且随二氧化碳的浓度的增加而加快。

碳化收缩一般不做计算。

混凝土收缩裂缝的特点是大部分属于表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。

研究表明:

影响混凝土收缩裂缝的主要因素有:

(1)水泥品种、标号和用量。

矿渣水泥、快硬水泥、低热水泥混凝

土收缩性较高,普通水泥、火山灰水泥、矾土水泥混凝土收缩性较低。

另外水泥标号越低、单位体积用量越大、模量细度越大,则混凝土收缩越大,且发生收缩的时间越长。

例如,为了提高混凝土的强度,施工时经常采用强行增加水泥用量的做法,结果收缩应力明显加大。

(2)骨料品种。

骨料中石英、石灰岩、白石岩、花岗岩、长石等吸水率

较小、收缩性较低;而砂岩、板岩、角闪岩等吸水率较大、收缩性较高。

另外大收缩小,含水量大收缩越大。

(3)水灰比。

用水量越大,水灰比越高,混凝土收缩越大。

(4)外掺剂。

外掺剂保水性越好,则混凝土收缩越小。

(5)养护方法。

良好的养护可加速混凝土的水化反应,获得较高的混凝

土强度。

养护时保持湿度越高、气温越低、养护时间越长,则混凝土收缩越小。

蒸汽养护方式比自然养护方式混凝土收缩要小。

(6)外界环境。

大气中湿度小、空气干燥、温度高、风速大,则混

凝土水份蒸发快,混凝土收缩更快。

(7)振捣方式和时间。

机械振捣方式比手工振捣方式混凝土收缩要小。

振捣时间应根据机械性能决定,一般5-185s/次为宜,时间太短,振捣不密实,形成混凝土强度不足或不均匀;时间太长,造成分层,粗骨料沉入底层,细骨料留在上层,强度不均匀,上层易发生收缩裂缝。

对于温度和收缩引起的裂缝,增配构造刚筋可明显提高混凝土的抗裂性,尤其是薄壁结构(壁厚20-60cm)。

构造上配筋宜优先采用小直径刚筋(直径8-14mm)、小间距布置(10-15cm),全截面构造配筋率不低于0.3%,一般可采用0.3%--0.5%

4、地基础变形引起的裂缝

由于基础竖向不均匀沉降或水平方向位移,使结构中产生附加应力,超出

混凝土结构的抗拉能力,导致结构开裂。

基础不均匀沉降的主要原因有:

a)地质勘查精度不够、试验资料不准。

在没有充分掌握地质情况就设计、

施工,这是造成地基不均匀沉降的主要原因。

比如丘陵地区或山岭地区桥梁,勘察时钻孔间距太远。

而地基岩面起伏又大,勘察报告不能充分反映实际地质情况。

b)地基地质差异太大,建在山区沟谷的桥梁,河沟的地质与山坡处变化

较大,河沟中甚至存在软弱地基,地基土由于不同压缩性引起不均匀沉降。

c)结构荷载差异太大,在地质情况比较一致的条件下,各部分基础荷载

差异太大时,有可能引起不均匀沉降,例如高填土箱型涵洞中部比两边的荷载要大,中部的沉降就要比两边大,箱梁可能开裂。

d)结构基础类型差别大。

同一联桥梁中,混合使用不同基础如扩大基础

和桩基础,或同时采用桩基础但桩径或桩长差别大时,或同时采用扩大基础但基底标高差异大时,也可能引起地基不均匀沉降。

e)分期建造的基础。

在原有桥梁基础附近新建桥梁时,如分期修建的高

速公路左右半幅桥梁,新建桥梁荷载或基础处理时引起地基土重新固结,均可能对原有桥梁基础造成较大沉降。

f)地基冻胀。

在低于零度的条件下含水率较高的地基土因冰冻膨胀;一

旦温度回升,冻土融化,地基下沉。

因此地基的冰冻或融化均可造成不均匀沉降。

g)桥梁基础置于滑坡体、溶洞或活动断层等不良地质时,可能造成不均

匀沉降。

h)桥梁建成以后,原有地基条件变化。

大多数天然地基和人工地基浸水

后,尤其是素填土、黄土、膨胀土等特殊地基土,土体强度遇水下降,压缩变形加大。

在软土地基中,因人工抽水或干旱季节导致地下水位下降,地基土层重新固结下沉,同时对基础的上浮力减小,负摩阻力增加。

基础受荷加大。

有些桥梁基础埋置过浅,受洪水冲刷、淘挖,基础可能位移。

地面荷载条件的变化,如桥梁附近因塌方、山体滑坡等原因堆置大量废方、沙石等,桥址范围土层可能受压缩再次变形。

因此,使用期间原有地基条件变化均可能造成不均匀沉降。

对于拱桥等产生水平推力的结构物,对地质情况掌握不够、设计不合理和施工时破坏了原有地质条件是产生水平位移裂缝的主要原因。

5、钢筋锈蚀引起裂缝

由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀碳

化至钢筋表面,是钢筋周围峻宁图碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长2-4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹到混凝土表面。

由于锈蚀,使得钢筋有效断面面积减小,钢筋与混凝土裹力消弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀,导致结构破坏。

要防止钢筋锈蚀,设计时应根据规范要求控制裂缝宽度、采用足够的保护

层厚度(当然保护层厚度不能太厚,否则构件有效高度减小,受力时将加大裂缝宽度);施工时应控制混凝土的水灰比,加强振捣,保证混凝土的密实性,防止氧气侵入,同时严格控制含氯盐的外加剂用量,沿海地区或其它存在腐蚀性强的空气、地下水地区尤其慎重。

6、冻胀引起的裂缝

大气气温低于零度时,吸水饱和的混凝土出现冰冻,游离的水转变成冰,

体积膨胀9%,因而混凝土产生膨胀应力;同时混凝土凝胶孔中的冷水在微观结构中迁移和重分布引起渗透压,使混凝土中膨胀力加大,混凝土强度降低,并导致裂缝出现。

尤其是混凝土初凝时受冻最严重,成龄后混凝土强度损失可达30%-50%,冬季施工时对预应力孔道灌浆后若不采取保温措施也可能发生沿管方向的冻胀裂缝。

温度低于零度和混凝土吸水饱和是发生冻胀破坏的必要条件。

当混凝土中

骨料空隙多、吸水性强,骨料中含泥土等杂质过多,混凝土水灰比偏大、振捣不密实,养护不力使混凝土早期受冻等,均可能导致混凝土冻胀裂缝。

冬季施工时,采用电气加热法、暖棚法、地下蓄热发、蒸汽加热法养护以和在混凝土拌合水总掺入防冻剂(氯盐不宜使用),可保证混凝土在低温或负温条件下硬化。

7、施工材料质量引起的裂缝

混凝土主要由水泥、砂、骨料、拌合水和外加剂组成。

配制混凝土所采用

材料质量不合格,可能导致结构出现裂缝。

1)水泥

(1)水泥安定性不合格,水泥中游离的氧化钙含量超标。

氯化钙在凝结过

程中水化很慢,在水泥混凝土凝结后仍然继续起水化作用,可破坏已硬化的水泥石,使混凝土抗拉强度下降。

(2)水泥出厂时强度不足,水泥受潮或过期,可能性混凝土强度不够足,

从而导致混凝土开裂。

(3)当水泥含碱量较高(超过6%),同时又使用含有碱性的骨料你,可能

导致碱骨料反应。

2)砂、石骨料

砂石的粒径、级配、杂质含量。

砂石粒径太小,级配不良、空隙率大,将导致水泥和拌合水用量加大,影响混凝土的强度,使混凝土收缩加大,如果使用超出规定的特细砂,后果更严重。

砂石中云母的含量较高,将消弱水泥与骨料的粘结力,降低混凝土强度。

砂石含泥量高,不仅将造成水泥和拌合水用量加大,而且还降低混凝土强度和抗冻性、抗渗性。

砂石中有机质和轻物质过多,将延缓水泥硬化过程,降低混凝土强度,特别是早期强度。

砂石中氯化物可与水泥中的铝酸三钙发生化学反应,体积膨胀2.5倍。

3)拌合水和外加剂

拌合水或外加剂中氯化物等杂质含量较高时对钢筋锈蚀有较大影响。

采用

海水或碱性水拌制混凝土,或采用含碱的外加剂,可能对碱骨料反应有影响。

8、施工工艺质量引起的裂缝

在混凝土结够浇筑、构件制作、起模、运输、堆放、拼装和吊装过程中,

若施工工艺不合理、施工质量低劣,容易产生纵向的、横向的、斜向的、竖向的、水平的、表面的、深进的和贯穿的各种裂缝,特别是细长薄壁结构更容易出现。

裂缝出现的部位和走向、裂缝宽度因产生的原因而异,比较典型常见的有:

(1)混凝土保护层过厚,或乱踩已绑扎的上层钢筋,使承受负弯矩的受

力筋保护层加厚,导致构件的有效高度减小,形成与受力钢筋垂直方向的裂缝。

(2)混凝土振捣不密实、不均匀,出现蜂窝、麻面、空洞,导致钢筋锈

蚀或其它荷载裂缝的起源点。

(3)混凝土浇筑过快,混凝土流动性较低,在硬化前因混凝土塌落度过

低,使用后出现不规则的收缩裂缝,即塑性收缩裂缝。

(4)混凝土搅拌、运输时间过长,使水分蒸发过多,引起混凝土塌落度

过低,使得在混凝土体积上出现不规则的收缩裂缝。

(5)混凝土初期养护时急剧干燥,使得混凝土与大气接触的表面上出现

不规则的收缩裂缝。

(6)用泵送混凝土施工时,为保证混凝土的流动性,增加水和水泥用量,

或因其它原因加大了水灰比,导致混凝土凝结硬化时收缩量增加,使得混凝土体积上出现不规则裂缝。

(7)混凝土分层或分段浇筑时,接头部位处理不好,易在新旧混凝土和

施工缝之间出现裂缝。

如混凝土分层浇筑时,后浇筑混凝土因停电。

下雨等原因未能在前浇筑混凝土初凝前浇筑,引起层面之间的水平裂缝;采用分段浇筑时,先浇筑混凝土接触面凿毛、清洗不好,新旧混凝土之间粘结力小,或后浇筑混凝土养护不到位,导致混凝土收缩而引起裂缝。

(8)混凝土早期受冻使构件表面出现裂纹或局部剥落,脱模后出现空鼓

现象。

(9)施工时模板刚度不足,在浇筑混凝土时,由于侧向压力的作用使得

模板变形,产生与模板变形一致的裂缝。

(10)施工时拆模过早,混凝土强度不足,使得构件在自重或施工荷

载作用下产生裂缝。

(11)施工前对支架压实度不足或支架刚度不足,浇筑混凝土后支架

不均匀下沉,导致混凝土出现裂缝。

(12)装配式结构,在构件运输、堆放时,支撑垫木不在一条垂直线

上,或悬臂过长,或运输过程中剧烈颠撞,吊装时吊点位置不当,T梁等侧向风力较小的构件,侧向无可靠的加固措施等,均可能产生裂缝。

(13)安装顺序不正确,对产生的后果认识不足,导致产生裂缝。

钢筋混凝土连续梁满堂支架现浇施工时,钢筋混凝土墙式护栏若与主梁同时浇筑,拆架后墙式护栏往往产生裂缝,拆架后再浇筑护栏,则裂缝不易出现。

(14)施工质量控制差。

任意套用混凝土配合比,水、砂石、水泥材

料计量不准,结果造成混凝土强度不足和其他性能(和易性、密实度)下降,导致结构开裂。

总结:

一座桥从建成到使用,牵涉到设计、施工、监理、运营管理等各个方面,由上述可知,设计疏漏、施工低劣、监理不力,均可能造成混凝土出现裂缝。

因此,严格按照有关规范、技术标准进行设计、施工和监理是保证结构安全和耐用的,避免一些问题的出现。

参考文献

叶见署结构设计原理北京:

人民交通出版社1996

姚玲森桥梁工程师北京:

人民交通出版社1985

范家冀高莲娣喻永言钢筋混凝土结构北京:

中国建筑工业出版社1993

张树仁王宗林桥梁病害诊断与改造加固设计北京:

人民交通出版社2006

 

中铁十八局集团三公司:

李金龙

2013年4月20日

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2