铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx

上传人:b****6 文档编号:12767018 上传时间:2023-06-07 格式:DOCX 页数:19 大小:159.35KB
下载 相关 举报
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第1页
第1页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第2页
第2页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第3页
第3页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第4页
第4页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第5页
第5页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第6页
第6页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第7页
第7页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第8页
第8页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第9页
第9页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第10页
第10页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第11页
第11页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第12页
第12页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第13页
第13页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第14页
第14页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第15页
第15页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第16页
第16页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第17页
第17页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第18页
第18页 / 共19页
铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx

《铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx》由会员分享,可在线阅读,更多相关《铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx(19页珍藏版)》请在冰点文库上搜索。

铸造技术动态建模过程和模具设计中英文对照外文翻译文献.docx

铸造技术动态建模过程和模具设计中英文对照外文翻译文献

中英文对照外文翻译

(文档含英文原文和中文翻译)

原文:

《Modellingthedynamicsofthetilt-castingprocessandtheeffectofthemoulddesignonthecastingquality》

Received29June2010

Revised9November2010

Accepted12November2010

Availableonline21November2010

Abstract

Alltitaniumalloysarehighlyreactiveinthemoltenconditionandsoareusuallymeltedinawater-cooledcoppercrucibletoavoidcontaminationusingprocessessuchasInductionSkullMelting(ISM).Theseprovideonlylimitedsuperheatwhich,coupledwiththesurfaceturbulenceinherentinmostconventionalmouldfillingprocesses,resultsinentrainmentdefectssuchasbubblesinthecastings.Toovercometheseproblems,anoveltilt-castingprocesshasbeendevelopedinwhichthemouldisattacheddirectlytotheISMcrucibleholdingthemeltandthetwoarethenrotatedtogethertoachieveatranquiltransferofthemetalintothemould.Fromthemodellingpointofview,thisprocessinvolvescomplexthree-phaseflow,heattransferandsolidification.Inthispaper,thedevelopmentofanumericalmodelofthetilt-castingprocessispresentedfeaturingseveralnovelalgorithmdevelopmentsintroducedintoageneralCFDpackage(PHYSICA)tomodelthecomplexdynamicinteractionoftheliquidmetalandmeltingatmosphere.Thesedevelopmentsrelatetothefronttrackingandheattransferrepresentationsandtoacasting-specificadaptationoftheturbulencemodeltoaccountforanadvancingsolidfront.Calculationshavebeenperformedfora0.4 mlongturbinebladecastinatitaniumaluminidealloyusingdifferentmoulddesigns.Itisshownthatthefeeder/basinconfigurationhasacrucialinfluenceonthecastingquality.Thecomputationalresultsarevalidatedagainstactualcastingsandareusedtosupportanexperimentalprogramme.Althoughfluidflowandheattransferareinseparableinacasting,theemphasisinthispaperwillbeonthefluiddynamicsofmouldfillinganditsinfluenceoncastqualityratherthanheattransferandsolidificationwhichhasbeenreportedelsewhere.

Keywords

Tilt-casting;Moulddesign;3-Dcomputationalmodel;Castingprocess;

1.Introduction

Thecastingprocessisalreadymanycenturiesold,yetmanyresearchersarestilldevotedtoitsstudy.Netshapecastingisveryattractivefromthecostpointofviewcomparedtoalternativecomponentmanufacturingmethodssuchasforgingormachining.However,reproduciblequalityisstillanissue;theeliminationofdefectsandcontrolofmicrostructuredriveresearch.Castinginvolvesfirstthefillingofthemouldandsubsequentlythesolidificationofthemelt.Fromthenumericalmodellingpointofview,thissimplesequenceresultsinaverycomplexthree-phaseproblemtosimulate.Arangeofinteractionsofphysicalphenomenaareinvolvedincludingfreesurfacefluidflowasthemouldfills,heterogeneousheattransferfromthemetaltothemould,solidificationofthemoltenmetalasitcools,andthedevelopmentofresidualstressesanddeformationofthesolidifiedcomponent.

Inindustrytherearemanyvariantsofthecastingprocesssuchassandcasting,investmentcasting,gravity,andlowandhighpressurediecasting.Inthisstudy,theinvestmentcastingprocess,alsocalledlost-waxcasting,hasbeeninvestigated.Oneoftheadvantagesofthisprocessisthatitiscapableofproducing(near)netshapeparts,whichisparticularlyimportantforgeometricallycomplexanddifficult-to-machinecomponents.Thisprocessstartswithmakingaceramicmouldwhichinvolvesthreemainsteps:

injectingwaxintoadietomakeareplicaofthecomponentandattachingthistoapouringbasinandrunningsystem;buildingaceramicshellbytheapplicationofseverallayersofaceramicslurryandceramicstuccotothewaxassembly;de-waxingandmouldfiring.Thepouringofthecastingisperformedeithersimplyundergravity(nocontrol),orusingarapidcentrifugalaction[1](dangerofmacro-segregationplushighlyturbulentfilling),orbysuctionasincounter-gravitycasting(e.g.theHitchinerprocess[2]),orbytilt-casting.Inthisstudy,tilt-castingwaschoseninanattempttoachievetranquilmouldfilling.Tilt-castingwaspatentedin1919byDurville[3]andhasbeensuccessfullyusedwithsandcastings[4]andaluminiumdiecastings[5].IntheIMPRESSproject[6],anovelprocesshasbeenproposedandsuccessfullydevelopedtocombineInductionSkullMelting(ISM)ofreactivealloyswithtilt-casting[7],[8],[9] and [10],withaparticularapplicationtotheproductionofturbinebladesintitaniumaluminidealloys.AsshowninFig.1,thisiscarriedoutinsideavacuumchamberandthemouldispre-heatedinsitutoavoidmisruns(incompletemouldfillingduetoprematuresolidification)andmouldcrackingduetothermalshock.

Tilt-castingprocess:

(a)experimentalequipment;(b)schematicviewoftheISMcrucibleandmould,showingthedomedshapeacquiredbythemoltenmetal;(c)differentstagesofmouldfillingshowingtheprogressivereplacementofgasbythemetal.Thecomponent(s)tobecastareattachedtoapouringbasinwhichalsodoublesasasourceofmetaltofeedthesolidificationshrinkage.Thecomponentsareangledonthebasintopromotetheprogressiveuni-directionalflowofmetalintothemould.Asthemetalentersthemoulditdisplacesthegasandanescaperoutehastobeincludedinthedesignsothatthetwocounter-flowingstreamsarenotmixedleadingtobubblestrappedinthemetal.Ventsarealsousedtoenableanytrappedgastoescape.The‘feeder’usedtoconnectthemouldtothecrucibleisnormallyinanycastingthelastportionofmetaltosolidify,sosupplyingmetaltothemouldtocountertheeffectsofsolidificationshrinkage.Intilt-casting,thefeederisalsotheconduitforthetranquilflowofmetalintothemouldandalsofortheunhinderedescapeofgas.Forthisreason,thefluiddynamicsofthemouldfeederinterfacemeritdetailedstudy.

Aswellasthemould/feederdesign,theproductionofcastingsinvolvesseveralotherkeyparameters,suchasthemetalpouringtemperature,initialmouldtemperature,selectivemouldinsulationandthetiltcycletiming.Alltheseparametershaveaninfluenceontheeventualqualityofthecastingleadingtoaverylargematrixofexperiments.Modelling(oncevalidated)iscrucialinreducingtheamountofphysicalexperimentsrequired.Asmentionedabove,themathematicalmodelsarecomplexduetothefactthatthisisathree-phaseproblemwithtworapidlydevelopingphasefronts(liquid/gasandsolid/liquid).Inthispaper,a3-Dcomputationalmodelisusedtosimulatethetilt-castingprocessandtoinvestigatetheeffectofthedesignofthebasin/feederontheflowdynamicsduringmouldfillingandeventuallyoncastingquality.

2.Experimentaldescription

Detailsoftheexperimentalsetuphavebeenpublishedelsewhere[11],butforcompletenessasummarydescriptionisgivenhere.Fig.1ashowsanoverallviewoftheequipmentusedtoperformthecasting.TheInductionSkullMelting(ISM)coppercrucibleisinstalledinsideavacuumchamber.Toenablerotation,itisattachedtoaco-axialpowerfeed,whichalsoallowscoolingwatercontainingethyleneglycoltobesuppliedtotheISMcrucibleandtheinductioncoil.Thecoilsuppliesamaximumof8 kAatafrequencyof∼6 kHz.Thecruciblewallissegmented,sothattheinductionfieldpenetratesthroughtheslots(byinducingeddycurrentsintoeachfingersegment)tomeltthechargeandatthesametimerepeltheliquidmetalawayfromthesidewalltominimisethelossofsuperheat.AbilletofTiAlalloyisloadedintothecruciblebeforeclampingontheceramicshellmould.Themouldissurroundedbyalowthermalmasssplit-mouldheater.Afterevacuatingthevacuumchamber,themouldisheatedtotherequiredtemperature(1200 °Cmaximum)andthevesselback-filledwithargontoapartialpressureof20 kPapriortomelting.Thispressuresignificantlyreducestheevaporativelossofthevolatilealuminiumcontainedinthealloy.Thepowerappliedtotheinductioncoilisincreasedaccordingtoapre-determinedpowervs.timeschedulesothatareproduciblefinalmetaltemperatureisachieved.Attheendofmelting(7–8 min),themouldheaterisopenedandmovedaway.Theinductionmeltingpowerisrampeddownand,simultaneously,theISMcrucibleandmouldarerotatedby180°usingaprogrammablecontrollertotransferthemetalintothemould.Themouldcontainingthecastingisheldverticallyasthemetalsolidifiesandcoolsdown.

3.Mathematicalmodel

3.1.Fluidflowequations

Themodellingofthecastingprocesshasinvolvedanumberofcomplexcomputationaltechniquessincetherearearangeofphysicalinteractionstoaccountfor:

freesurfacefluidflow,turbulence,heattransferandsolidification,andsoon.ThefluidflowdynamicsofthemoltenmetalandthegasfillingtherestofthespacearegovernedbytheNavier–Stokesequations,anda3Dmodelisusedtosolvetheincompressibletime-dependentflow:

(1)

(2)

whereuisthefluidvelocityvector;ρisthedensity;μisthefluidviscosity;Suisasourcetermwhichcontainsbodyforces(suchasgravitationalforce,aresistiveforce(Darcyterm)[12])andtheinfluenceofboundaries.Thereisasharp,rapidlyevolving,propertyinterfaceseparatingmetalandgasregionsintheseequationsasexplainedbelow.

3.2.Freesurface:

counterdiffusionmethod(CDM)

Oneofthedifficultiesofthesimulationarisesfromthefactthattwofluidmediaarepresentduringfilling:

liquidmetalandresidentgasandtheirdensityratioisashighas10,000:

1.Notonlydoesthefluidflowproblemneedtobesolvedoverthedomain,butthemodelalsohastotracktheevolutionoftheinte

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 小学教育 > 语文

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2