材料物理112161358.docx

上传人:b****6 文档编号:12771816 上传时间:2023-06-08 格式:DOCX 页数:12 大小:90.10KB
下载 相关 举报
材料物理112161358.docx_第1页
第1页 / 共12页
材料物理112161358.docx_第2页
第2页 / 共12页
材料物理112161358.docx_第3页
第3页 / 共12页
材料物理112161358.docx_第4页
第4页 / 共12页
材料物理112161358.docx_第5页
第5页 / 共12页
材料物理112161358.docx_第6页
第6页 / 共12页
材料物理112161358.docx_第7页
第7页 / 共12页
材料物理112161358.docx_第8页
第8页 / 共12页
材料物理112161358.docx_第9页
第9页 / 共12页
材料物理112161358.docx_第10页
第10页 / 共12页
材料物理112161358.docx_第11页
第11页 / 共12页
材料物理112161358.docx_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

材料物理112161358.docx

《材料物理112161358.docx》由会员分享,可在线阅读,更多相关《材料物理112161358.docx(12页珍藏版)》请在冰点文库上搜索。

材料物理112161358.docx

材料物理112161358

Astudyonphononiccrystals

Abstract:

Asisknowntoall,phononiccrystalisanewtypeofacousticfunctionalmaterial,whichisnecessarytobeusedinsomespecialoccasions,thestudyofphononiccrystalscausedagreatdealofattentioninthenationalresearchinstitutes.Thisarticleintroducestheconceptandthebasiccharacteristicsofphononiccrystalsindetail,thephononiccrystaldefectsstatecharacteristics,thephononiccrystalsforbiddenbandmechanismandvariouspotentialapplicationareas(noiseandvibrationreduction)inphononiccrystals.Finally,weprospecttheresearchanddevelopmentofthephononiccrystals.

Keywords:

phononiccrystalsnoiseandvibrationreductionprospect

1Introduction

Thepotentialfieldofsemiconductoratomsarrangesperiodically.Whenthepropagationoftheelectronshappeninthesemiconductor,theinteractionbetweenelectronicsandatomicperiodicpotentialmakessemiconductorelectronicoccupybandgap,whichisabletomanipulatetheflowofelectrons.Onbehalfofthesiliconcrystalsemiconductorhasbroughtarevolutioninscienceandtechnology.Withthedevelopmentofthetransistors,integratedcircuits,large-scaleintegratedcircuitsevenultra-large-scaleintegratedcircuits,semiconductortechnologyhasaprofoundimpactontheprogressofhumancivilization[1,2].

Morethantenyearsago,peoplebegantotouchontheopticalpropertiesofthestructureandfunctionofmaterialsresearch.Theoryandexperimentshaveprovedthatifthedielectricofthematerialisaconstant,thestructureandfunctionintheperiodicvariationintheopticalwavelengthscale,theinteractionofphotonswithperiodicstructuremakesthematerialhasasimilarsemiconductorelectronicband-gapenergybandstructure,calledphotonicbandgap(knownasphotonicbandgap).Periodicdielectricphotonicbandgapstructureandfunctionofmaterialsarecalledphotoniccrystal(photoniccrystals).Photonenergyfallsonthelightwavesinthephotonicbandgapcannotbeinthephotonpropagationinthecrystal.Whenthephotoniccrystalexists(orintroduced)pointdefectsorlinedefects,theforbiddenbandoflightwaveswillbelocalizedinthepointdefectoronlyalongthedefectpropagation.Thedesignoftheperiodicstructureofthephotoniccrystalanditsdefects,canartificiallyregulatetheflowofphotons[3].

In1987,theconceptofphotoniccrystalsindependentlyproposedbyE.YabionovithchandS.Johntwo[4].In1991,Yabionovitchverifiedtheexistofmicrowavephotonicbandgapbyexperimental.Photoniccrystalthenquicklybecamephotoelectronandinformationtechnologyresearchinthefieldhotspots.Subsequently,itisdiscoveredthatwhentheelasticwavepropagationexistsinperiodicelasticcompositemedium,itwillhaveasimilarelasticwaveband,therefore,puttingforwardtheconceptofphononiccrystals.Phononiccrystalhasawealthofphysicalconnotationandpotentiallybroadapplicationprospects.Phononiccrystalshavecausedgreatconcernofnationalresearchinstitutions[5].

2Phononiccrystals

2.1Theconceptsandbasiccharacteristicsofphononiccrystals

ThePhononiccrystalisthecyclicalnatureoftheelasticwavebandstructureandfunctionofmaterials[6].Phononiccrystalinternalmaterialcomponent(calledgroups)oftheelasticconstantsandmassdensityparameterscyclicalchanges.Withthebandgapofthematerialcomponentswithdifferentperiodicstructuresintheformofdifferentphononcrystalelasticwavecharacteristicsaredifferent.

Phononiccrystalshavesimilarbasiccharacteristics:

whentheelasticwavefrequencyfallswithinthebandgaprange,theelasticwaveisprohibitionofthedissemination,whenthereexistsapointdefectorlinedefect,theelasticwaveislocalizedatthepointdefects,oronlyalongthedefectpropagation[7].Similarly,thedesignofthethephononiccrystalperiodicstructuredefectscanartificiallyregulatetheflowofelasticwaves.

Elasticwaveiscoupledbylongitudinalandtransversewavesfullvectorwave,threeindependentelasticparametersareineachgroup,thatthemassdensityP,thelongitudinalwavevelocityCiandshearwavewavevelocityCt(inthefluidmedium,Ct=0);lightwaveisascalarwave,onlyoneindependentelasticparameteristhedielectricconstantineachelement.Thephononiccrystals,therefore,possessingaricherphysicalmeaning[8].Thefollowingliststherelevantcharacteristicsofthe(electronic)crystals,photoniccrystalsandphononcrystalscomparedwiththreestrikingsimilaritiescanbeseenfromthetable,the(electronic)crystals,photoniccrystalresearchmethodsphononcrystalshaveaguidingrole.

AccordingtothecrystalstructureofthephononsintheCartesiancoordinatesystem,inthreeorthogonaldirectionsinthecircumferential,periodicphononiccrystalscanbedividedintoone-dimensional,two-dimensional,three-dimensionalphononiccrystals.Scholarsresearchhasbeencarriedoutonsomeofthespecificstructureofphononiccrystals:

aone-dimensionalphononiccrystals,generalperiodiclayeredstructureconsistingoftwoormorematerials;dimensionalphononiccrystals.Usuallyacertaindirectionisparalleltothespaceforthecenteraxisofthecylindermaterial[9],andtheperiodicityofthelatticestructureareformedintheburiedbasematerial,thecylindermaterialcanbeholloworsolid,generallycircularcross-sectionofthecylinder,canalsobesquare.Cylinderarrangementformmaybeasquarearrangement,deltaarrangement,thehexagonalarraylikedimensionalphononcrystalsaregenerallyburiedinabasematerialformedofasphericalscatteringbodyperiodiclatticestructure,periodiclatticestructurescanbeintheformofabody-centeredcubicstructure,face-centeredcubicstructure,hexagonalclose-packedstructure.Figure1showsatypicalschematicblockdiagramofthevariousphononcrystals.

Fig1Phononiccrystalsofdifferentdimensions

2.2Theresearchoverviewofphononiccrystal

Thepropagationcharacteristicsofelasticwavesinlayeredmediaresearchhasbeenfornearly70years’history,whilethephononiccrystalsproposaloftheconceptandthetheoryofphononcrystalwasjustnearly10-yearhistory[10].Phononiccrystalresearches,duetothedifficultiesoftheoreticalresearch,aswellasotherfactors,makingrelativelyslowprogressandthecrystalliteratureoftotalarenomorethan150,accordingtoincompletestatistics.In1992,MMSignalandENEconomoufirstconfirmedintheorythatasphericalscatteringbodyembeddedinamatrixmaterialtoformathree-dimensionalperiodiclatticestructurehavingelasticwavebandgapcharacteristics[11].In1993,M.S.Kushwahaet.alfirstclearphononiccrystalsandtheconcept,andnickelcolumnaluminumalloyformingthecompositedielectricmatrix,calculatedbytheplanewavemethodcanbeobtainedinshearpolarizationdirectionofelasticwaveband.In1995,R.Martinez-Salaet.alintheWestSpainMadrid200yearsago,asculpturemadeflowingmelodyacousticpropertiesresearch,firstconfirmedthepresenceoftheelasticwavebandfromtheexperimentalpointofviewfromthisphononcrystalcausedgreatconcern[12].Phononiccrystalresearchworkfocusesontheformationofthebandgapofphononiccrystalsandphaseshouldthetheoreticalcalculations[13].Inaddition,scholarsarefromvariouscountriesincrystaldefectsphononstatestudy,experimentalresearchhasalsobeenmadegoodprogressinapplicationsofexploreinfancy.

Phononiccrystalresearchareasareinthecountry,WuhanUniversityandGuandongUniversityofScienceandTechnologyhasmadesomeprogress.NationalUniversityofDefenseTechnologyPhotonic/phononiccrystalresearchcenteriscurrentlyengagedinthestudyofphononiccrystals[14].

2.3Researchcontentofphononcrystals

Phononiccrystalresearchesmainlyincludesthreeaspects:

thebandgapofthephononiccrystalmechanism,characteristicsofdefectstatesandapplicationresearches.

2.3.1phononiccrystalbandgapmechanism

Alotoftheoreticalandexperimentalstudieshaveprovedtheexistenceofaphononiccrystalelasticwaveband,Figure2showsatypicalphononcrystalbandstructure,shadedinFigure2istheelasticwavebandgap.

Fig2Anelasticbandgapofatypicalphononiccrystal

Therearetwomorematureaboutthemechanismofelasticwavebandformed,scatteringmechanismsandlocallyresonantmechanisminPrague.Braggscatteringleadedbycrystalbandtheoryinsolidstatephysics,photoniccrystalscomplywiththeBraggscatteringmechanism.Braggscatteringcausedbythebandgapismainlydueto[15]:

thecyclechanginginmaterialpropertieswithelasticwaveinteraction,suchthatcertainfrequenciesofthewavedoesnotcorrespondtothevibrationmodeintheperiodicstructure,whichcannotspread,resultingintheforbiddenband.LargenumberofstudiesofelasticwavebandgapformedliteraturefocusesontheBraggscatteringmechanism,thestudyshowsthattheelasticwavebandgapgeneratescompositemediarelatedcomponentoftheelasticconstants,densityandspeedofsound,andthefillingratioofthecomponent;andlatticestructureandsize.Ingeneral,non-networktypeofthelatticestructurethannetwork-typelatticestructureiseasytoproducethebandgap;elasticcomponentinthecompositedielectricconstant,thegreaterthedifference,themorepronetheforbiddenband[16].Inaddition,thewavelengthoftheelasticwavebandcorrespondingBraggscatteringformesoftheelasticwaveisusuallyassociatedwithperiodicstructure,thesizeparameter(i.e,thelatticesizeorlatticeconstant)equivalenttotheforbiddenbandisconsistentwiththemechanisminconceptwitht

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 职业教育 > 中职中专

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2