卧式车床电气控制电路设计说明.docx

上传人:b****8 文档编号:12808075 上传时间:2023-06-08 格式:DOCX 页数:21 大小:239.97KB
下载 相关 举报
卧式车床电气控制电路设计说明.docx_第1页
第1页 / 共21页
卧式车床电气控制电路设计说明.docx_第2页
第2页 / 共21页
卧式车床电气控制电路设计说明.docx_第3页
第3页 / 共21页
卧式车床电气控制电路设计说明.docx_第4页
第4页 / 共21页
卧式车床电气控制电路设计说明.docx_第5页
第5页 / 共21页
卧式车床电气控制电路设计说明.docx_第6页
第6页 / 共21页
卧式车床电气控制电路设计说明.docx_第7页
第7页 / 共21页
卧式车床电气控制电路设计说明.docx_第8页
第8页 / 共21页
卧式车床电气控制电路设计说明.docx_第9页
第9页 / 共21页
卧式车床电气控制电路设计说明.docx_第10页
第10页 / 共21页
卧式车床电气控制电路设计说明.docx_第11页
第11页 / 共21页
卧式车床电气控制电路设计说明.docx_第12页
第12页 / 共21页
卧式车床电气控制电路设计说明.docx_第13页
第13页 / 共21页
卧式车床电气控制电路设计说明.docx_第14页
第14页 / 共21页
卧式车床电气控制电路设计说明.docx_第15页
第15页 / 共21页
卧式车床电气控制电路设计说明.docx_第16页
第16页 / 共21页
卧式车床电气控制电路设计说明.docx_第17页
第17页 / 共21页
卧式车床电气控制电路设计说明.docx_第18页
第18页 / 共21页
卧式车床电气控制电路设计说明.docx_第19页
第19页 / 共21页
卧式车床电气控制电路设计说明.docx_第20页
第20页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

卧式车床电气控制电路设计说明.docx

《卧式车床电气控制电路设计说明.docx》由会员分享,可在线阅读,更多相关《卧式车床电气控制电路设计说明.docx(21页珍藏版)》请在冰点文库上搜索。

卧式车床电气控制电路设计说明.docx

卧式车床电气控制电路设计说明

毕业设计说明书

 

卧式车床电气控制电路设计

 

学号11834112

姓名徐善宁

班级机电111

专业机电一体化

系部机电技术学院

指导老师国屏

完成时间2013年9月1日至2014年3月11日

引言

第1章车床的设备概况

1.1主要结构

1.2车床的运动形式

1.2.1主运动

1.2.2进给运动

1.2.3辅助运动

第2章电力拖动及控制要求

2.1电力拖动的特点

2.2电源形式

第3章电气控制方案的设计

3.1主回路的设计

3.2控制回路的设计

3.3车床照明灯与电源指示灯的控制设计

3.4电气保护环节的设计

第4章电动机及其他电气元件的选择

4.1电动机的选择

4.1.1主轴电动机

4.1.2冷却泵电动机

4.1.3快速移动电动机

4.2电动机转速和结构型式的选择

4.2.1转速的选择

4.2.2结构型式的选择

4.3电气元件的选择

4.3.1热继电器

4.3.2交流接触器

4.3.3熔断器

4.3.4按钮

4.3.5行程开关

4.3.6信号灯

4.3.7机床照明灯

4.3.8断路器

4.3.9控制变压器

附件1:

机电设备的电气位置图

附件2:

电气接线图

结束语

参考文献

 

引言

车床是机床中应用最广泛的一种,它可以用于切削各种工件的外圆、孔、端面及螺纹。

车床在加工工件时,随着工件材料和材质的不同,应选择合适的主轴转速及进给速度。

但目前中小型车床多采用不变速的异步电动机拖动,它的变速是靠齿轮箱的有级调速来实现的,所以它的控制电路比较简单。

为满足加工的需要,主轴的旋转运动有时需要正转或反转,这个要求一般是通过改变主轴电动机的转向或采用离合器来实现的。

进给运动多半是把主轴运动分出一部分动力,通过挂轮箱传给进给箱来实现刀具的进给。

有的为了提高效率,刀架的快速运动由一台进给电动机单独拖动。

车床一般都设有交流电动机拖动的冷却泵,来实现刀具切削时冷却。

有的还专设一台润滑泵对系统进行润滑。

本设计的主要任务是根据车床的工作情况确定电气设计的技术条件、电力拖动形式的选择、电动机的选择及其他电器元件、电气控制原理图,绘制机电设备的位置图和接线图,最后按要求写出设计报告,绘出设计图样。

第一章设计的目的、要求、任务及方法

要完成好电气控制系统的设计任务,除掌握必要的电气设计基础知识外,还必须经过反复实践,深入生产现场,将不断积累的经验应用到设计中来。

毕业设计正是为这一目的而安排的实践性教学环节,它是一项初步的工程训练。

通过毕业设计,了解一般电气控制系统的设计要求、设计容和设计方法。

电气设计包含原理设计和工艺设计两个方面,不能忽视任何一面,对于应用型人才更应重视工艺设计。

毕业设计属于练习性质,不强调设计结果直接用于生产。

1.1设计目的

毕业设计的主要目的是通过某一生产设备的电气控制装置的设计实践,了解一般电气控制系统设计过程、设计要求、应完成的工作容和具体设计方法。

通过设计也有助于复习、巩固以往所学的知识,达到灵活应用的目的。

电气设计必须满足生产设备和生产工艺的要求,因此,设计之前必须了解设备的用途、结构、操作要求和工艺过程,在此过程中培养从事设计工作的整体观念。

毕业设计应强调能力培养为主,在独立完成设计任务的同时,还要注意其他几方面能力的培养与提高,如独立工作能力与创造力;综合运用专业及基础知识的能力,解决实际工程技术问题的能力;查阅图书资料、产品手册和各种工具书的能力;工程绘图的能力;书写技术报告和编制技术资料的能力。

1.2设计要求

在毕业设计中,学生是主体,应充分发挥他们的主动性和创造性。

教师的主导作用是引导其掌握完成设计容的方法。

为保证顺利完成设计任务还应做到以下几点:

1)在接受设计任务后,应根据设计要求和应完成的设计容进度计划,确定各阶段应完成的工作量,妥善安排时间。

2)在方案确定过程中应主动提出问题,以取得指导数师的帮助,同时要广泛讨论,依据充分。

在具体设计过程中要多思考,尤其是主要参数,要经过计算论证。

3)所有电气图样的绘制必须符合国家有关规定的标准,包括线条、图型符号、项目代号、回路标号、技术要求、标题栏、元器件明细表以及图样的折叠和装订。

4)说明书要求文字通顺、简练,字迹端正、整洁。

5)应在规定的时间完成所有的设计任务。

6)如果条件允许,应对自己的设计线路进行试验论证,考虑进一步改进的可能性。

1.3设计任务

毕业设计要以设计任务书的形式表达,设计任务书应包括以下容:

1)设备的名称、用途、基本结构、动作原理以及工艺过程的简要介绍。

2)拖动方式、运动部件的动作顺序、各动作要求和控制要求。

3)联锁、保护要求。

4)照明、指示、报警等辅助要求。

5)应绘制的图样。

6)说明书要求。

原理设计的中心任务是绘制电气原理图和选用电器元件。

工艺设计的目的是为了得到电气设备制造过程中需要的施工图样。

图样的类型、数量较多,设计中主要以电气设备总体配置图、电器板元器件布置图、控制面板布置图、接线图、电气箱以及主要加工零件(电器安装底板、控制面板等)为练习对象。

对于每位设计者只需完成其中一部分。

原理图及工艺图样均应按要求绘制,元器件布置图应标注总体尺寸、安装尺寸和相对位置尺寸。

接线图的编号应与原理图一致,要标注组件所有进出线编号、配线规格、进出线的连接方式(采用端子板或接插板)。

1.4设计方法

在接到设计任务书后,按原理设计和工艺设计两方面进行。

1.4.1原理图设计的步骤

1)根据要求拟定设计任务。

2)根据拖动要求设计主电路。

在绘制主电路时,可考虑以下几个方面:

①每台电动机的控制方式,应根据其容量及拖动负载性质考虑其起动要求,选择适当的起动线路。

对于容量小(7.5kW以下)、起动负载不大的电动机,可采用直接起动;对于大容量电动机应采用降压起动。

②根据运动要求决定转向控制。

③根据每台电动机的工作制,决定是否需要设置过载保护或过电流控制措施。

④根据拖动负载及工艺要求决定停车时是否需要制动控制,并决定采用何种控制方式。

⑤设置短路保护及其他必要的电气保护。

⑥考虑其他特殊要求:

调速要求、主电路参数测量、信号检测等。

3)根据主电路的控制要求设计控制回路,其设计方法是:

①正确选择控制电路电压种类及大小。

②根据每台电动机的起动、运行、调速、制动及保护要求依次绘制各控制环节(基本单元控制线路)。

③设置必要的联锁(包括同一台电动机各动作之间以及各台电动机之间的动作联锁)。

④设置短路保护以及设计任务书中要求的位置保护(如极限位、越位、相对位置保护)、电压保护、电流保护和各种物理量保护(温度、压力、流量等)。

⑤根据拖动要求,设计特殊要求控制环节,如自动抬刀、变速与自动循环、工艺参数测量等控制。

⑥按需要设置应急操作。

4)根据照明、指示、报警等要求没计辅助电路。

5)总体检查、修改、补充及完善。

主要容包括:

①校核各种动作控制是否满足要求,是否有矛盾或遗漏。

②检查接触器、继电器、主令电器的触点使用是否合理,是否超过电器元器件允许的数量。

③检查联锁要求能否实现。

④检查各种保护能否实现。

⑤检查发生误操作所引起的后果与防措施。

6)进行必要的参数计算。

7)正确、合理地选择各电器元器件,按规定格式编制元件目录表。

8)根据完善后的设计草图,按电气制图标准绘制电气原理线路图,按《电气技术中的项目代号》要求标注器件的项目代号,按《绝缘导线的标记》的要求对线路进行统一编号。

1.4.2工艺设计步骤

1)根据电气设备的总体配置及电器元件的分布状况和操作要求划分电器组件,绘制电气控制系统的总装配图和接线图。

2)根据电器元器件的型号、外形尺寸、安装尺寸绘制每一组件的元件布置图(如电器安装板、控制面板、电源、放大器等)。

3)根据元器件布置图及电气原理编号绘制组件接线图,统计组件进出线的数量、编号以及各组件之间的连接方式。

4)绘制并修改工艺设计草图后,使可按机械、电气制图要求绘制工程图。

最后按设计过程和设计结果编写设计说明书及使用说明书。

第1章车床的设备概况

1.1主要结构

 

1.2运动形式

某卧式车床的主要结构及运动形式某型卧式车床主要由主轴箱、挂轮箱、进给箱、溜板箱、尾架、拖板与刀架、光杠与丝杠、床身等部件组成。

车削加工中,主运动为主轴通过卡盘或顶点带动工件的旋转运动,它承受车削加工时的主要切削功率。

根据被加工零件的材料性质、车刀材料、零件尺寸,加工方式及冷却条件的不同,要求具有不同的切削速度,车床的调速围D=140。

卧式车床加工时一般不要求反转,但在加工螺纹时,为避免乱扣,加工完毕后要求反转退刀,再纵向进刀继续加工,这就要求主轴具有正、反转。

主轴的反转是由主轴电动机经传动机构实现,有些车床,也可通过机械方式使主轴反转。

车床的进给运动是溜板带动刀架的纵向与横向运动。

运动方式有手动和机动两种。

车削螺纹时,工件的旋转速度与刀具的进给速度应有严格的比例关系,所以车床主轴箱输出轴经挂轮箱传给进给箱,再经光杆传给溜板箱,以获得纵、横两个方向的进给运动。

车床的辅助运动为溜板箱的快速移动、尾架的移动和工件的夹紧与松开。

1.2.1主运动

车床的主运动是工件的旋转运动,它是由主轴通过卡盘或顶尖带动工件旋转。

电动机的动力通过主轴箱传给主轴,主轴一般只要单方向的旋转运动,只有在车螺纹时才需要用反转来退刀。

1.2.2进给运动

车床的进给运动是溜板带动刀具作纵向或横向的直线移动,也就是使切削能连续进行下去的运动。

所谓纵向运动是指相对于操作者的左右运动,横向运动是指相对于操作者的前后运动。

车螺纹时要求主轴的旋转速度和进给的移动距离之间保持一定的比例,所以主运动和进给运动要由同一台电动机拖动,主轴箱和车床的溜板箱之间通过齿轮传动来联接,刀架再由溜板箱带动,沿着床身导轨作直线走刀运动。

1.2.3辅助运动

车床的辅助运动包括刀架的快进与快退,尾架的移动与工件的夹紧与松开等。

第二章电力拖动的特点及控制要求

2、电力拖动及控制要求

1)中、小型车床的电机容量较小,在电网容量满足要求的情况下,一般采用直接起动、连续工作。

2)车削加工的主电动机、冷却泵电机、快速移动电机,选用三相鼠笼异步电动机,主轴电动机速度围10~1400rpm,调速围较大,故车床的主轴采用齿轮变速,主轴电机无需变速控制。

3)车削螺纹时为避免乱扣现象要求主轴能反转退刀,因此主轴的正、反转一般有机械方法实现,主轴电动机只做单向旋转。

4)加工螺纹时,进给运动与主运动之间必须保持准确的比例关系,因此主运动和进给运动由同一台电机(主轴电机)拖动。

5)刀架快速移动电动机不需调速和正反转,可直接启动,点动控制。

6)加工过程中为防止刀具和工件的温度过高,需要附有冷却泵电机。

冷却泵电机只需单向旋转,手动控制。

7)冷却泵电机和主轴电动机要实现顺序控制。

8)主轴电动机的启动、停止用按钮操作。

9)必须有过载、短路、失压保护。

10)机床要有照明设施照明:

24V安全电压,信号:

6V电压

3.主要参数

型号

参数

主轴电动机速度围

1450r/min

回转直径

400mm

快速移动电机

3000r/min

冷却泵转速

2790r/min

照明

24V

信号灯

6V

控制信号

110V

4.设计任务

1)根据控制要求,进行卧式车床电气控制系统方案和电路设计(主电路、基本控制电路、保护环节)。

2)编写设计说明书,容包括:

①设计过程和有关说明。

②卧式车床电气控制系统原理图1。

③卧式车床电气控制系统接线图1。

④电器元器件的选择和有关计算。

⑤电气设备明细表。

⑥参考资料、参考书及参考手册。

⑦其他需要说明的问题,例如操作说明书、遇到的问题及解决方法、对毕业设计的认识和建议等。

2.2电源形式

主电路采用交流380V电源直接供电,对于比较复杂的控制线路,应采用控制电源变压器,将控制电压由交流380V降至110V或24V、6V等,这是从安全角度考虑的。

本设计由控制变压器将交流380V变换成110V、24V、和6V分别供给控制回路、照明回路和信号回路。

第三章电气控制原理图的设计方案

3.1主回路的设计

如图1所示,在主电路中,一共有三台电动机。

M1为主轴电动机,带动主轴旋转和刀架作进给运动;M2为冷却泵电动机,用来输送切削液;M3为刀架快速移动电动机。

3.1.1主电动机正反转

  KM1与KM2分别为交流接触器KM1与KM2的主触头。

根据电气控制基本知识分析可知,KM1主触头闭合、KM2主触头断开时,三相交流电源将分别接入电动机的U1、V1、W1三相绕组中,M1主电动机将正转。

反之,当KM1主触头断开、KM2主触头闭合时,三相交流电源将分别接入M1主电动机的W1、V1、U1三相绕组中,与正转时相比,U1与W1进行了换接,导致主电动机反转。

3.1.2主电动机全压与减压状态

  当KM主触头断开时,三相交流电源电流将流经限流电阻R而进入电动机绕组,电动机绕组电压将减小。

如果KM3主触头闭合,则电源电流不经限流电阻而直接接入电动机绕组中,主电动机处于全压运转状态。

3.1.3绕组电流监控

  电流表A在电动机M1主电路中起绕组电流监视作用,通过TA线圈空套在绕组一相的接线上,当该接线有电流流过时,将产生感应电流,通过这一感应电流间显示电动机绕组中当前电流值。

其控制原理是当KT常闭延时断开触头闭合时,TA产生的感应电流不经过A电流表,而一旦KT触头断开,A电流表就可检测到电动机绕组中的电流。

3.1.4电动机转速监控

  KS是和M1主电动机主轴同转安装的速度继电器检测元件,根据主电动机主轴转速对速度继电器触头的闭合与断开进行控制。

主轴电动机由热继电器FR1作过载保护,熔断器FU1作短路保护。

3.1.5冷却泵电动机电路

冷却泵电动机M2喷出冷却液,实现刀具的冷却,由接触器KM4控制,热继电器FR2作为它的过载保护,熔断器FU4作短路保护。

3.1.6快移电动机电路

刀架快速移动电动机M3接触器KM3控制,由于是点动控制,故不设过载保护,熔断器FU5作短路保护。

主电路通过TC变压器与控制线路和照明灯线路建立电联系。

TC变压器一次侧接入电压为380V,二次侧有36V、110V两种供电电源,其中24V给照明灯线路供电,而110V给车床控制线路供电。

6V供给信号指示。

FU2作控制电路短路保护。

3.2控制回路的设计

1)主电动机点动控制

按下SB2,KM1线圈通电,根据原态支路常断现象,其余所有线圈均处于断电状态。

因此主电路中为KM1主触头闭合,由QS隔离开关引入的三相交流电源将经KM1主触头、限流电阻接入主电动机M1的三相绕组中,主电动机M1串电阻减压起动。

一旦松开SB2,KM1线圈断电,电动机M1断电停转。

  SB2是主电动机M2的点动控制按钮。

2)主电动机正转控制

按下SB3,KM线圈通电与KT线圈同时通电,并通过20区的常开辅助触头KM3闭合而使KA线圈通电,KA线圈通电又导致11区中的KA常开辅助触头闭合,使KM1线圈通电。

而7~9区的KM1常开辅助触头与KA常开辅助触头对SB3形成自锁。

主电路中KM主触头与KM1主触头闭合,电动机不经限流电阻R则全压正转起动。

绕组电流监视电路中,因KT线圈通电后延时开始,但由于延时时间还未到达,所以KT常闭延时断开触头保持闭合,感应电流经KT触头短路,造成A电流表中没有电流通过,避免了全压起动初期绕组电流过大而损坏A电流表。

KT线圈延时时间到达时,电动机已接近额定转速,绕组电流监视电路中的KT将断开,感应电流流入A电流表将绕组中电流值显示在A表上。

3)主电动机反转控制

按下SB4,通过6、7、5、6线路导致KM线圈与KT线圈通电,与正转控制相类似,11区的KA线圈通电,再通过7、8、9使KM2线圈通电。

主电路中KM2、KM主触头闭合,电动机全压反转起动。

KM1线圈所在支路与KM2线圈所在支路通过KM2与KM1常闭触头实现电气控制互锁。

  4)主电动机反接制动控制

正转制动控制:

右KS是速度继电器的正转控制触头,当电动机正转起动至接近额定转速时,右KS闭合并保持。

制动时按下SB1,控制线路中所有电磁线圈都将断电,主电路中KM1、KM2、KM主触头全部断开,电动机断电降速,但由于正转转动惯性,需较长时间才能降为零速。

一旦松开SB1,则经1、6、右KS、8、9,使KM2线圈通电。

主电路中KM2主触头闭合,三相电源电流经KM2使U1、W1两相换接,再经限流电阻R接入三相绕组中,在电动机转子上形成反转转矩,并与正转的惯性转矩相抵消,电动机迅速停车。

在电动机正转起动至额定转速,再从额定转速制动至停车的过程中,右KS反转控制触头始终不产生闭合动作,保持常开状态。

反转制动控制:

左KS在电动机反转起动至接近额定转速时闭合并保持。

与正转制动相类似,按下SB1,电动机断电降速。

一旦松开SB1,则经1、6、左KS、2、3,使线圈KM1通电,电动机转子上形成正转转矩,并与反转的惯性转矩相抵消使电动机迅速停车。

5)冷却泵电动机起停控制

按下SB6,线圈KM4通电,并通过KM4常开辅助触头对SB6自锁,主电路中KM4主触头闭合,冷却泵电动机M2转动并保持。

按下SB5,KM4线圈断电,冷却泵电动机M2停转。

6)快移电动机点动控制

行程开关由车床上的刀架手柄控制。

转动刀架手柄,行程开关SQ将被压下而闭合,KM3线圈通电。

主电路中KM3主触头闭合,驱动刀架快移的电动机M3起动。

反向转动刀架手柄复位,SQ行程开关断开,则电动机M3断电停转。

7)照明电路

灯开关SA置于闭合位置时,EL灯亮。

SA置于断开位置时,EL灯灭。

3.3车床照明灯与电源指示灯的控制

照明、信号电路分析控制变压器TC的二次侧分别输出36V和110V电压,作为车床低压照明灯和信号灯的电源。

EL作为车床的低压照明灯由开关SA控制,HL为电源信号灯。

它们由FU3作为短路保护

3.4电气保护环节

(1)不要漏接接地线,不能用金属软管作为接地的通道。

(2)在控制箱外部进行布线时,导线必须穿在导线通道或敷设在机床底座的导线通道里。

所有导线不得有接头。

(3)在导线通道敷设导线进行接线时,必须作到查出一根导线,套一根线号。

(4)在进行快速进给时,注意将运动部件处于行程的中间位置,以防止运动部件与车头或尾架相撞。

(5)主轴电动机不能启动

发生主轴电动机不能启动的故障时,首先检查故障是发生在主电路还是控制电路,若按下启动按钮,接触器KM1不吸合,此故障则发生在控制电路,主要应检查FU2是否熔断,过载保护FR1是否动作,接触器KM1的线圈接线端子是否松脱,按钮SB1、SB2的触点接触是否良好。

若故障发生在主电路,应检查车间配电箱及主电路开关的熔断器的熔丝是否熔断,导线联接处是否有松脱现象,KM1主触点的接触是否良好。

(6)主轴电动机启动后不能自锁

当按下启动按钮后,主轴电动机能启动运转,但松开启动按钮后,主轴电动机也随之停止。

造成这种故障的原因是接触器KM1的自锁触点的联接导线松脱或接触不良。

(7)主轴电动机不能停止

造成这种故障的原因多数为KM1的主触点发生熔焊或停止按钮击穿所致。

(8)电源总开关合不上

电源总开关合不上的原因有两个,一是电气箱子盖没有盖好,以致SQ2(1-11)行程开关被压下;二是钥匙电源开关SA2没有右旋到SA2断开的位置。

(9)指示灯亮但各电动机均不能启动

造成这种故障的主要原因是FU3的熔体断开,或挂轮架的皮带罩没有罩好,行程开关SQ断开。

 

第四章电动机及其他电气元件的选择

4.1电动机的选择

4.1.1主轴电动机

当主运动和进给运动采用同一电动机时,只计算主运动电动机功率即可。

多数机床负载情况比较复杂,切削用量变化很大,尤其是通用机床负载种类更多,不易准确地确定其负载情况。

因此通常采用调查统计类比或采用分析与计算相结合的方法来确定电动机的功率。

(1)调查统计类比法

目前我国机床设计制造部门,往往采用这种方法来选择电动机容量。

这种方法就是对机床主拖动电动机进行实测、分析,找出了电动机容量与机床主要数据的关系,根据这种关系作为选择电动机容量的依据。

卧式车床主电动机的功率:

式中:

P主拖动电机功率(kW);

D工件最大直径(m)。

(2)分折计算法

可根据机床总体设计中对机械传动功率的要求,确定机床拖动用电动机功率。

即知道机械传动的功率,可计算出所需电动机功率:

式中:

P电动机功率;

P1机械传动轴上的功率;

η1生产机械效率;

η2电动机与生产机械之间的传动效率。

式中:

η:

为机床总效率,一般主运动为回转运动的机床取

0.7~0.85;主运动为往复运动的机床取0.6~0.7(结构简单的取大值,复杂的取小值)。

根据实际情况,最后确定电动机的容量为11KW。

4.1.2冷却泵电动机

冷却泵电动机的容量比较小,一般选取90W即可。

4.1.3快速移动电动机

快速移动电动机所需要的功率,一般由经验数据来选择,选择为250W。

4.2电动机转速和结构型式的选择

4.2.1转速的选择

电动机功率的确定是选择电动机的关键,但也要对转速、使用电压等级及结构形式等项目进行选择。

异步电动机由于它结构简单坚固、维修方便、造价低廉,因此在机床中使用得最为广泛。

电动机的转速愈低则体积愈大,价格也愈高,功率因数和效率也就低,因此电动机的转速要根据机械的要求和传动装置的具体情况加以选定。

异步电动机的同步转速有3000r/min、1500r/min、1000r/min、750r/min、600r/min等几种,这是由于电动机的磁极对数的不同而决定的。

电动机转子转速由于存在着转差率,一般比同步转速约低2%~5%。

一般情况下,可选用同步转速为1500r/min的电动机,因为这个转速下的电动机适应性较强,而且功率因数和效率也高。

若电动机的转速与该机械的转速不一致,可选取转速稍高的电动机通过机械变速装置使其一致。

根据以上容选择主轴电动机M1转速为1450r/min;冷却泵电动机M2转速为3000r/min;快速移动电动机M3转速为1360r/min。

4.2.2结构型式的选择

一般地说,金属切削机床都采用通用系列的普通电动机。

Y系列三相异步电动机是机床上常用的三相异步电动机。

Y系列电动机是封闭自扇冷式笼型三相异步电动机,是全国统一设计的新的基本系列,它是我国取代JO2系列的更新换代产品。

安装尺寸和功率等级完全符合IEC标准和DIN42673标准。

本系列采用B级绝缘,外壳防护等级为IP44,冷却方式为IC0.141。

因此,主轴电动机选择Y160M-4型电动机;

冷却泵电动机采用专门的AOB-25系列油泵电机,由封闭自冷的三星异步电动机和单级离心泵组合而成,主要是给一般机床和其他设备输送循环冷却液(冷却液为肥皂水,打水,轻矿物油和其他无腐蚀性的液体),该系列泵效率高,体积小,重量轻,运行平稳,安全可靠。

刀架快速移动电动机选择通用的AOS5634型电动机。

因此电动机的选择如下:

主轴电动机M1:

型号Y160M-4;容量11KW;转速1450r/min。

作用:

工件的旋转和刀具的进给

冷却泵电动机M2:

型号AOB-25;容量90W;转速3000r/min。

作用:

输送冷却液用

刀架快速

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2