变压吸附制氮说明书.docx

上传人:b****8 文档编号:12866462 上传时间:2023-06-08 格式:DOCX 页数:19 大小:203.57KB
下载 相关 举报
变压吸附制氮说明书.docx_第1页
第1页 / 共19页
变压吸附制氮说明书.docx_第2页
第2页 / 共19页
变压吸附制氮说明书.docx_第3页
第3页 / 共19页
变压吸附制氮说明书.docx_第4页
第4页 / 共19页
变压吸附制氮说明书.docx_第5页
第5页 / 共19页
变压吸附制氮说明书.docx_第6页
第6页 / 共19页
变压吸附制氮说明书.docx_第7页
第7页 / 共19页
变压吸附制氮说明书.docx_第8页
第8页 / 共19页
变压吸附制氮说明书.docx_第9页
第9页 / 共19页
变压吸附制氮说明书.docx_第10页
第10页 / 共19页
变压吸附制氮说明书.docx_第11页
第11页 / 共19页
变压吸附制氮说明书.docx_第12页
第12页 / 共19页
变压吸附制氮说明书.docx_第13页
第13页 / 共19页
变压吸附制氮说明书.docx_第14页
第14页 / 共19页
变压吸附制氮说明书.docx_第15页
第15页 / 共19页
变压吸附制氮说明书.docx_第16页
第16页 / 共19页
变压吸附制氮说明书.docx_第17页
第17页 / 共19页
变压吸附制氮说明书.docx_第18页
第18页 / 共19页
变压吸附制氮说明书.docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

变压吸附制氮说明书.docx

《变压吸附制氮说明书.docx》由会员分享,可在线阅读,更多相关《变压吸附制氮说明书.docx(19页珍藏版)》请在冰点文库上搜索。

变压吸附制氮说明书.docx

变压吸附制氮说明书

变压吸附制氮气实验

一、实验目的

1.理解变压吸附理论,掌握所学理论知识,并与实践相结合。

2.了解变压吸附分离技术的应用领域,了解变压吸附设备,能够熟练操作设备。

3.掌握吸附压力、循环周期、产品气流量等对产品氮气浓度的影响。

4.掌握单塔穿透试验的测试方法,并绘制出穿透曲线。

二、实验原理

1.变压吸附现象

吸附是一个复杂过程,存在着化学和物理吸附现象,而变压吸附则是纯物理吸附,整个过程均无化学吸附现象存在。

众所周知,当气体与多孔和固体吸附剂(如活性炭类)接触,因固体表面分子与部分子不同,具有剩余的表面自由力场或称表面引力场,因此使气相中的可被吸附的组分分子碰撞到固体表面后即被吸附。

当吸附于固体表面分子数量逐渐增加,并将要被覆盖时,吸附剂表面的再吸附能力下降,即失去吸附能力,此时己达到吸附平衡。

变压吸附在化工、轻工、炼油、冶金和环保等领域都有广泛的应用。

如气体中水分的脱除,气体混合物的分离,溶剂的回收,水溶液或有机溶液的脱色、除臭,有机烷烃的分离,芳烃的精制等等。

2.变压吸附原理

变压吸附是在较高压力进行吸附,在较低压力下使吸附的组分解吸出来。

从图1吸附等温线可看出,吸附量与分压的关系,升压吸附量增加,而降压可使吸附分子解吸,但解吸不完全,故用抽空方法得到脱附解吸并使吸附剂再生。

图1、变压吸附的吸附等温线

吸附-解吸的压力变换为反复循环过程,但解吸条件不同,可以有不同结果,可通过图2(a)、(b)得到解释。

当被处理的吸附混合物中有强吸附物和弱吸附物存在时,强吸附物被吸附,而弱吸附物被强吸附物取代而排出,在吸附床未达到吸附平衡时,弱吸附物可不断排出,并且被提纯。

1.1常压解吸(见图2(a))

(1)升压过程(A-B)

经解吸再生后的吸附床处于过程的最低压力P1,床层杂质的吸留量为Q1(A点),在此条件下让其他塔的吸附出口气体进入该塔,使塔压升至吸附压力P3,此时床杂质的吸留量Q1不变(B点)。

(2)吸附过程(B-C)

在恒定的吸附压力下原料气不断进入吸附床,同时输出产品组分,吸附床杂质组分的吸留量逐步增加,当达到规定的吸留量Q3时(C点),停止进入原料气,吸附终止,此时吸附床上部仍预留有一部分未吸附杂质的吸附剂。

(3)顺放过程(C-D)

沿着进入原料气输出产品的方向降低压力,流出的气体仍然是产品组分,这部分气体用于其他吸附床升压或冲洗。

在此过程中,随床压力不断下降,吸附剂上的杂质被不断解吸,解吸的杂质又继续被吸附床上部未充分吸附杂质的吸附剂吸附,因此杂质并未离开吸附床,床杂质吸留量Q3不变。

当吸附床降压到D点时,床吸附剂全部被杂质占用,压力为P2。

(4)逆放过程(D-E)

逆着进入原料气输出产品的方向降低压力,直到变压吸附过程的最低压力P1(通常接近大气压力),床大部分吸留的杂质随气流排出器外,床杂质吸留量为Q2。

(5)冲洗过程(E-A)

根据实验测定的吸附等温线,在压力P1下吸附床仍有一部分杂质吸留量,为使这部分杂质尽可能解吸,要求床压力进一步降低。

为此利用其他吸附床顺向降压过程排出的产品组分,在过程最低压力P1下对床层进行逆向冲洗不断降低杂质分压使杂质解吸并随冲洗气带出吸附床。

经一定程度冲洗后,床杂质吸留量降低到过程的最低量Q1时,再生结束。

至此,吸附床完成了一个吸附解吸再生过程,准备再次升压进行下一个循环。

图2变压吸附的基本过程

1.2真空解吸(见图2(b))。

经真空解吸再生后的吸附床处于过程的最低压力P0、床杂质吸留量为Q1(A点),在此条件下用让其他塔的吸附出口气体进入该塔,使塔压升至吸附压力P3,床杂质吸留量Q1不变(B点)。

(2)吸附过程(B-C)

在恒定的吸附压力下原料气不断进入吸附床,同时输出产品组分,吸附床杂质组分的吸留量逐步增加,当达到规定的吸留量Q3时(C点)停止进入原料气,吸附终止,此时吸附床上部仍预留有一部分未吸附杂质的吸附剂。

(3)顺放过程(C-D)

沿着进入原料气输出产品的方向降低压力,流出的气体仍为产品组分,这部分气体用于其他吸附床升压或冲洗。

在此过程中,随床压力不断下降,吸附剂上的杂质被不断解吸,解吸的杂质又继续被吸附床上部未充分吸附杂质的吸附剂吸附,因此杂质并未离开吸附床,床杂质吸留量Q3不变。

当吸附床降压到D点时,床吸附剂全部被杂质占用,压力为P2。

(4)逆放过程(D-E)

逆着进入原料气输出产品的方向降低压力,直到变压吸附过程的最低压力P1(通常接近大气压力),床大部分吸留的杂质随气流排出器外,床杂质吸留量为Q2。

(5)抽空过程(E-A)

根据实验测定的吸附等温线,在压力P1下吸附床仍有一部分杂质吸留量,为使这部分杂质尽可能解吸,要求床压力进一步降低。

在此利用真空泵抽吸的方法降低床层压力,从而降低了杂质分压使杂质解吸并随抽空气带出吸附床。

抽吸一定时间后,床压力为P0,杂质吸留量降低到过程的最低量Q1时,再生结束。

至此,吸附床完成了一个吸附-解吸再生过程,准备再次升压进行下一个循环。

当被处理的吸附混合物中有强吸附和弱吸附质,而强吸附质被吸附是弱吸附质在加压条件下不被吸附而排出,利用这规律就可提纯弱吸附。

而强吸附质达到吸附平衡后,可通过真空操作解吸出来,也提高了纯度。

当多吸附床联合操作,并采用多自动阀门转换,即可一端出高浓度的弱吸附质,另一端出高纯度强吸附质。

3.变压吸附制氮气原理

变压吸附空分制氮技术是以压缩空气为原料,利用吸附剂对氮和氧的选择性吸附特性,把空气中的氮和氧分离出来,从而获得高浓度的氮气的方法。

吸附剂采用碳分子筛,碳分子筛对氧氮的吸附速率相差很大,(如图3所示),在短时间,氧的吸附速度大大超过氮的吸附速度,利用这一特性来完成氧氮分离。

在一定压力下,压缩空气经过装填碳分子筛的吸附塔,氧气被快速吸附,而高浓度的氮气作为产品气从吸附塔顶端排出,这一过程叫做加压吸附。

一段时间后,分子筛对氧的吸附达到平衡,根据分子筛在不同压力下吸附氧气量不同的特性,降低压力以解除分子筛对氧气的吸附,将氧气排出室外,这个过程称为减压再生(为了是碳分子筛更加彻底的解吸再生,可对碳分子筛进行抽真空解吸或者产品气吹扫)。

本实验装置采用两台吸附塔并联,交替进行加压吸附和减压再生过程,以获得连续的氮气。

图3碳分子筛对氧氮的吸附动力学曲线

三、实验流程

V1:

排水阀,V2、V8、V9:

放空阀,V3:

进气总阀,V4、V5:

逆止阀,V6、V7:

调节阀,D1:

五位三通电磁阀,F1、F2:

转子流量计

图4变压吸附制氮工艺流程图

该装置基本流程和配制为:

空气压缩机空气缓冲罐干燥器吸附塔A/B(两塔流程)

氮分析仪氮气产品缓冲罐真空缓冲罐真空泵

空气经压缩机压缩至0.6Mpa至空气缓冲罐,再经过干燥器干燥后进入碳分子筛吸附塔组成的变压吸附分离系统,压缩空气从吸附塔顶端进入,空气中氧气、二氧化碳、和水分被吸附剂选择吸附,其余组分(主要是氮气)则从吸附塔底部流出,经氮气产品气缓冲罐后输出。

之后,吸附塔减压解吸,脱除所吸附的杂质组分,完成分子筛的再生。

吸附塔循环交替操作,连续送入空气,连续产出氮气。

氮气经计量及氮气分析仪分析纯度后放空。

上述过程由五位三通电磁阀(D1)控制,五位三通电磁阀的工作原理如图5:

当电磁阀A通电时,1、3接通,4、5接通;当电磁阀B通电时,1、5接通,2、3接通。

图5五位三通阀(D1)工作原理示意图

对五位三通电磁阀D1(包含电磁阀A、B)的开关控制是由控制面板上的时间控制器来实现的,其控制示意图如图6。

时间控制器1控制电磁阀A,当时间控制器1左半边工作时,电磁阀A处于关闭状态,右半边工作时,电磁阀A处于通电(开启)状态;时间控制器2控制电磁阀B,当时间控制器2左半边工作时,电磁阀B处于关闭状态,右半边工作时,电磁阀B处于通电(开启)状态。

因此,为了配合变压吸附的循环周期过程,两个控制器的电源的打开不是同步的,当时间控制器1打开半周期后,再开启时间控制器2,这样才能完成变压吸附的循环。

时间控制器控制示意图见图6,变压吸附时序控制见表1.

图6时间控制器控制示意图

表1变压吸附时序控制表

周期过程

1

2

电磁阀A

通电

不通电

电磁阀B

不通电

通电

吸附塔A状态

吸附

抽真空解吸

吸附塔B状态

抽真空解吸

吸附

四、设备配置

1、空气压缩机1台WM-6型,排气量:

0.9m3/h;

2、吸附塔φ外32×750mm2个;

3、吸附剂碳分子筛,在吸附塔中装填至满。

4、干燥器:

φ32×300mm干燥剂:

变色硅胶;

5、压缩空气缓冲罐φ外150×300mm1个;真空缓冲罐φ外150×250mm1个;产品罐:

φ76×100mm1个;

6、五位三通电磁阀1个;逆止阀2个;稳压阀1个;

7、压力变送器规格0.6MPa2个;真空压力表规格-0.1-0.9MPa2个;

8、KY-2F型控氮仪1台

9、真空泵1台;

10、其他阀门若干。

11、在线测量软件,1套

五、实验步骤

1.穿透曲线的测定

(1)设备初始状态除V1、V2、V8、V9外,其余所有阀门均处于关闭状态。

(2)压缩空气准备调好空气压缩机压力围,即开机压力与停机压力,使压缩的空气压力在0.4-0.6MPa之间。

关闭V1、V2,向缓冲罐充压。

(3)打开电脑、打开变压吸附试验装置测试软件,准备在线测试与记录。

(4)真空解吸以吸附塔A为例做单塔的穿透曲线。

1)抽真空准备关闭阀门V8、V9,打开真空泵。

调节时间控制器2右半边时间至99M(时间调节围在0.1s-990h之间),左半边时间1s。

2)开启时间控制器2电源,打开阀门V6,缓慢打开阀门V7并从小到大调节V7开度对吸附塔A抽真空,当抽至压力表示数不变时认为抽真空基本彻底,此时关闭阀门V7,关闭真空泵,关闭时间控制器2,打开阀门V9。

(5)穿透曲线的测定

1)准备打开阀门V3,调节稳压阀至一定压力Pi,设置时间控制器1的右半边时间均为99M(时间调节围在0.1s-990h之间,设定时间足够长,保证在此时间完全穿透),左半边时间为1s。

打开时间控制器1电源,迅速进入2)步骤。

2)打开入口流量计阀门稳定在一定流量F1并缓缓向吸附塔A充入Pi压力下的压缩空气,点击软件上“开始试验”按钮,计时开始。

待充至常压时,打开出口流量计并调到一定流量F2,每2s通过测氮仪记录氮气的出口浓度

,直至氮气出口浓度

达到原料空气中的氮气浓度

(空气中氮气浓度按79%计算)时停止试验,关闭进口阀门V3。

记录入口流量F1和出口流量F2以及吸附压力Pi。

(6)穿透曲线的绘制以单塔塔顶出口氧气浓度

与原料气中氧浓度

(空气中氧气浓度按79%计算)的比值为纵坐标,以时间为横坐标做穿透曲线,即

曲线。

注意:

由于产品缓冲罐含有一定空气,所以在用此种方法做穿透曲线的时候,出口处氮气浓度是先增加后减少。

开始时氮浓度增加是因为空气中的氧气被吸附,后来氮浓度减少是因为吸附塔吸附剂吸附氧气渐渐饱和,所以在绘制穿透曲线时应注意,氮气浓度减少前认为吸附塔没有穿透,而在这之前的氮气浓度按照实验实测的最大浓度计算。

(7)改变吸附压力、流量,考察吸附压力、出口流量对穿透曲线的影响。

2.变压吸附制氮气

(1)设备初始状态除V1、V2、V8、V9外,其余所有阀门均处于关闭状态。

(2)压缩空气准备调好空气压缩机压力围,即开机压力与停机压力,使压缩的空气压力在0.4-0.6MPa之间。

关闭V1、V2,向缓冲罐充压。

(若做完穿透曲线,

(1)

(2)步骤已做,则可直接进入步骤(3))

(3)在线测试打开电脑、打开变压吸附试验装置测试软件,进行在线测试与记录。

开始实验的同时点击记录按钮,在线记录数据。

(4)时间控制器设定

1)根据穿透时间大小,设置吸附时间。

吸附时间应小于穿透时间。

时间控制器1、2左右两边时间设置均相同。

根据本装置设计以及碳分子筛分离氮氧能力,每个吸附塔的吸附时间在25-70s,因此时间控制器的半周期可在25-70s设定。

2)打开时间控制器1电源,待时间控制器1右半边时间运行完毕并跳向左半边的同时打开时间控制器2电源。

(5)开始试验

1)打开阀门V3,调节稳压阀至一定压力Pi,调节入口流量计流量为F1与出口流量计流量F2。

并记录Pi、F1、F2。

2)关闭阀门V8、V9,打开真空泵,打开V6,缓慢打开阀门V7并调节其开度,对吸附塔进行抽真空解吸,循环开始。

在产品气出口得到产品氮气。

(6)数据记录与处理实验开始10-30min后趋于稳定,吸附压力、循环周期、产品气出口流量对产品气氮浓度均有一定影响。

记录相关数据,考察以上因素对产品气氮浓度的影响。

五、数据处理

1、做出不同压力、不同原料气流量对穿透曲线的影响。

2、按照试验要求编制数据记录表格,并记录相应压力、循环周期、产品气出口流量、氮含量等数据,考察压力、循环周期、产品气出口对氮含量的影响。

六、思考题

1、变压为什么能使空气中的氮氧分离?

2、能用于变压吸附的吸附剂有哪些?

3、氮氧分离为什么要控制吸附压力、吸附周期、产品气出口流量,它们对氮浓度有什么影响?

七、调试数据

1.不同压力下的穿透曲线

保持出口流量3L/min不变,改变吸附压力,测试不同吸附压力下的穿透曲线,测试结果如下:

穿透曲线绘制方法以出口流量3L/min、吸附压力0.3MPa下的数据为例计算:

原始数据:

T/s

N2

O2

C/Co

 

 

 

 

0

79.2

 

0.385714

2

79.2

 

0.385714

4

79.2

 

0.385714

6

79.2

 

0.385714

8

79.2

 

0.385714

10

79.2

 

0.385714

12

79.2

 

0.385714

14

79.2

 

0.385714

16

79.2

 

0.385714

18

80.4

 

0.385714

20

83.6

 

0.385714

22

86.1

 

0.385714

24

88.4

 

0.385714

26

89.6

 

0.385714

28

90.4

 

0.385714

30

91.1

 

0.385714

32

91.4

 

0.385714

34

91.7

 

0.385714

36

91.8

 

0.385714

38

91.9

0.385714

40

91.9

8.1

0.385714

42

91.8

8.2

0.390476

44

91.8

8.2

0.390476

46

91.6

8.4

0.4

48

91.5

8.5

0.404762

50

91.4

8.6

0.409524

52

91.2

8.8

0.419048

54

91.1

8.9

0.42381

56

91

9

0.428571

58

90.8

9.2

0.438095

60

90.6

9.4

0.447619

62

90.5

9.5

0.452381

64

90.3

9.7

0.461905

66

90.1

9.9

0.471429

68

89.9

10.1

0.480952

70

89.7

10.3

0.490476

72

89.5

10.5

0.5

74

89.3

10.7

0.509524

76

89.1

10.9

0.519048

78

88.8

11.2

0.533333

80

88.6

11.4

0.542857

82

88.4

11.6

0.552381

84

88.2

11.8

0.561905

86

87.9

12.1

0.57619

88

87.7

12.3

0.585714

90

87.4

12.6

0.6

92

87.2

12.8

0.609524

94

87

13

0.619048

96

86.7

13.3

0.633333

98

86.4

13.6

0.647619

100

86.1

13.9

0.661905

102

85.9

14.1

0.671429

104

85.7

14.3

0.680952

106

85.4

14.6

0.695238

108

85.2

14.8

0.704762

110

85

15

0.714286

112

84.7

15.3

0.728571

114

84.5

15.5

0.738095

116

84.2

15.8

0.752381

118

83.8

16.2

0.771429

120

83.6

16.4

0.780952

122

83.4

16.6

0.790476

124

83.2

16.8

0.8

83

17

0.809524

128

82.8

17.2

0.819048

130

82.6

17.4

0.828571

132

82.5

17.5

0.833333

134

82.1

17.9

0.852381

136

81.9

18.1

0.861905

81.7

18.3

0.871429

140

81.5

18.5

0.880952

142

81.3

18.7

0.890476

144

81.2

18.8

0.895238

146

81

19

0.904762

148

80.8

19.2

0.914286

150

80.7

19.3

0.919048

152

80.6

19.4

0.92381

154

80.4

19.6

0.933333

156

80.3

19.7

0.938095

158

80.1

19.9

0.947619

160

80

20

0.952381

162

79.9

20.1

0.957143

164

79.7

20.3

0.966667

166

79.6

20.4

0.971429

168

79.5

20.5

0.97619

170

79.4

20.6

0.980952

172

79.3

20.7

0.985714

174

79.2

20.8

0.990476

176

79.1

20.9

0.995238

178

79

21

1

180

79

21

1

182

79

21

1

184

79

21

1

79

21

1

188

79

21

1

190

79

21

1

192

79

21

1

79

21

1

79

21

1

79

21

1

200

79

21

1

202

79

21

1

204

79

21

1

206

79

21

1

208

79

21

1

210

79

21

1

212

79

21

1

214

79

21

1

216

79

21

1

218

79

21

1

220

79

21

1

222

79

21

1

224

79

21

1

226

79

21

1

228

79

21

1

230

79

21

1

232

79

21

1

234

79

21

1

236

79

21

1

238

79

21

1

240

79

21

1

242

79

21

1

244

79

21

1

246

79

21

1

248

79

21

1

250

79

21

1

252

79

21

1

254

79

21

1

256

79

21

1

258

79

21

1

260

79

21

1

262

79

21

1

264

79

21

1

266

79

21

1

268

79

21

1

270

79

21

1

272

79

21

1

274

79

21

1

276

79

21

1

278

79

21

1

280

79

21

1

由表所示,在第40s时,氮气浓度达到最大,在40s之前认为没有穿透,在0-40s,C/C0的值按照第40s时计算。

绘制出C/C0~t的曲线。

2.不同出口流量下的穿透曲线

保持吸附压力0.3MPa不变,改变出口流量,考察产品气出口流量对穿透曲线的影响,结果如下图:

3.吸附压力对氮浓度的影响

保持吸附周期为90s、产品气出口流量3L/min不变,考察吸附压力对产品气氮浓度的影响,结果如下图:

4.产品气出口流量对氮浓度的影响

保持吸附压力0.2MPa不变,吸附周期90s,改变产品气流量,考察产品气流量对氮浓度的影响

4.循环周期对氮浓度的影响

保持吸附压力0.19MPa,出口流量2L/min,考察循环周期对氮浓度的影响,结果如下:

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > IT计算机 > 电脑基础知识

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2