高炉用耐火材料.docx

上传人:b****6 文档编号:12880393 上传时间:2023-06-08 格式:DOCX 页数:57 大小:52.39KB
下载 相关 举报
高炉用耐火材料.docx_第1页
第1页 / 共57页
高炉用耐火材料.docx_第2页
第2页 / 共57页
高炉用耐火材料.docx_第3页
第3页 / 共57页
高炉用耐火材料.docx_第4页
第4页 / 共57页
高炉用耐火材料.docx_第5页
第5页 / 共57页
高炉用耐火材料.docx_第6页
第6页 / 共57页
高炉用耐火材料.docx_第7页
第7页 / 共57页
高炉用耐火材料.docx_第8页
第8页 / 共57页
高炉用耐火材料.docx_第9页
第9页 / 共57页
高炉用耐火材料.docx_第10页
第10页 / 共57页
高炉用耐火材料.docx_第11页
第11页 / 共57页
高炉用耐火材料.docx_第12页
第12页 / 共57页
高炉用耐火材料.docx_第13页
第13页 / 共57页
高炉用耐火材料.docx_第14页
第14页 / 共57页
高炉用耐火材料.docx_第15页
第15页 / 共57页
高炉用耐火材料.docx_第16页
第16页 / 共57页
高炉用耐火材料.docx_第17页
第17页 / 共57页
高炉用耐火材料.docx_第18页
第18页 / 共57页
高炉用耐火材料.docx_第19页
第19页 / 共57页
高炉用耐火材料.docx_第20页
第20页 / 共57页
亲,该文档总共57页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

高炉用耐火材料.docx

《高炉用耐火材料.docx》由会员分享,可在线阅读,更多相关《高炉用耐火材料.docx(57页珍藏版)》请在冰点文库上搜索。

高炉用耐火材料.docx

高炉用耐火材料

高炉用耐火材料

耐火材料行业是为高温技术服务的重要基础行业,与钢铁工业的关系尤为密切。

高温工业尤其是钢铁冶炼技术的新发展,促进了耐火材料工业的技术进步。

耐火材料工业的技术进步又保证了高温工业新技术的实施。

钢铁工业中各种窑炉的稳产、高产、长寿都离不开耐火材料,各种窑炉因用途和使用条件不同,对构成其主体的耐火材料的要求也不同,而不同种类的耐火材料也由于化学物质组成、显微结构的差异和生产工艺的不同,表现出不同的基本特性。

因此,了解研究工业窑炉用耐火材料,就有必要了解耐火材料的基本性质。

本章在此基础上,重点介绍高炉、热风炉用耐火材料。

3.1 耐火材料的基本性质

耐火材料是指耐火度不低于1580℃的无机非金属材料。

它包括天然矿石及按照一定的目的要求经过一定的工艺制成的各种制品。

它具有一定的高温力学性能、良好的体积稳定性。

3.2 高炉炉体用耐火材料

高炉是炼铁的主要设备,它具有产量大、生产率高和成本低的优点,这是其它炼铁方法所无法比拟的。

我国某高炉炉体内衬用耐火材料示意图如图3-3所示。

随着世界各国钢铁工业的进步,高炉朝着大型化、高效化和长寿化发展,逐步采用富氧喷煤、高风温操作、高压炉顶等新的冶炼技术。

高炉炉衬工作条件随之发生了重大变化,其使用寿命降低较多,一般只有5~6年。

特别是高炉炉身下部及炉腰、炉腹部位,其使用寿命就更短。

为适应这一发展,高炉用耐火材料也有了较大的变化,长寿命新型、高效耐火材料逐渐被应用,高炉寿命逐步提高。

根据高炉炉衬的操作条件和蚀损的特征,要求耐火材料具有:

⑴良好的高温使用性能,在长期高温下热稳定性好。

⑵常温和高温下的强度要高,耐磨性能要好。

⑶致密度高,导热性好,显气孔率低,高温收缩小。

⑷能抵抗高温、高压下的铁水、熔渣、高炉煤气和炉尘的剧烈冲刷和侵蚀。

⑸耐火砖外形尺寸准确,能确保砖缝达到规定的要求。

目前,高炉用耐火材料的品种很多,炉身中上部一般采用性能优异的粘土砖或高铝砖,炉身下部、炉腰及炉腹则用碳质制品、碳化硅砖、莫来石砖、刚玉砖等特种耐火材料,特别是最近发展起来的碳化硅砖,在高炉上的应用获得了成功。

同时,其它不定形耐火材料也得到了广泛应用。

3.2.1 炉喉和炉顶用耐火材料

炉喉主要起保护炉衬、合理布料的作用。

炉喉正常工作时,温度为400~500℃,这一区域主要受炉料直接冲击和摩擦作用,但煤气流的冲刷相对较轻。

因此,炉喉一般采用水冷或无水冷钢砖(铸钢件),水冷钢砖与炉壳之间充填浇注料,无水冷钢砖安装时,配合施工浇注料。

炉顶即煤气封罩,一般采用金属锚固件加耐磨的耐火喷涂料。

3.2.2 炉身用耐火材料

炉身是高炉重要的组成部分,起着炉料的加热、还原和造渣作用。

自始至终承受着煤气流的冲刷与物料的冲击。

但炉身上部和中部温度较低(400~800℃),无炉渣形成和渣蚀危害。

这部位主要承受炉料冲击、炉尘上升的磨损或热冲击(最高达50℃/min)或者受到碱、锌等的侵入和碳的沉积而遭受破坏。

所以该部位主要采用低气孔率的优质粘土砖及高铝砖。

特别是在耐火制品品种增加和质量提高的情况下,高炉炉衬寿命都大为延长。

但是随着大中型高炉操作条件苛刻化和大幅度延长高炉寿命制度的确立,该部位要求采用在耐剥落性和耐磨性方面都很优异的耐火材料。

因此,在炉身上部还采用磷酸盐结合的粘土砖,上部和中部还采用硅线石质耐火砖和耐剥落性优异的高铝质耐火砖。

炉身下部温度较高,这部分区域是热交换较多的区域,有大量低熔物形成,有炽热炉料下降时的磨擦作用,煤气上升时粉尘的冲刷作用和碱金属蒸气的侵蚀作用。

因此,这个部位极易受侵蚀,严重者冷却器全部被侵蚀光,只靠钢壳来维持。

所以,要求采用有很好的抗渣性、抗碱性和高温强度及耐磨性较高的优质粘土砖、高铝砖、刚玉砖、铝炭砖或碳化硅砖,对于冷却板结构的内衬也有使用石墨砖的。

3.2.3 炉腰用耐火材料

炉腰起着上升煤气流的缓冲作用。

炉料在这里已部分还原造渣,料层的透气性变差,同时渣蚀严重。

另外,炉腰部位的温度高(1400~1600℃,高温辐射侵蚀严重;碱的侵蚀也比较严重;含尘的炽热炉气上升,对炉衬产生较强的冲刷作用;焦炭等物料产生摩擦;热风通过时引起温度急剧变化作用。

上述诸多因素的共同作用,使这个部位的耐火材料损毁很严重。

因此,炉腰部位一般选择抗渣侵蚀性强、耐冲刷的耐火材料。

对于冷却板结构的内衬也有使用石墨砖。

3.2.4 炉腹用耐火材料

炉腹连接着炉缸和炉腰。

这一区域温度更高,其下部炉料温度约在1600~1650℃,气流温度也高,并形成大量的中间渣开始滴落。

该部位所受的热辐射、熔渣侵蚀都很严重。

另外,碱金属的侵入,碳的沉积而引起的化学作用,由上而下的熔体和由下而上的炽热气流的冲刷作用也加剧。

所以,炉腹部位历来都是高炉寿命最短的关键环节。

因此,该区域的材料应有很高的抗侵蚀、抗冲刷能力,同时还要兼有一定的抗热震能力。

因此,现代大中型高炉在此部位采用这类耐火材料比较普遍。

烧成铝炭砖及烧成微孔铝碳砖也具有较好的抗压、抗折、抗侵蚀、抗冲刷能力,导热性好,而且容易掛渣,最重要的是抗热震能力强,价格也比较便利,在我国中型和中小型高炉采用的比较普遍。

对于冷却板结构的内衬也有使用石墨砖的

3.2.5 炉缸、炉底用耐火材料

炉缸是盛装铁水和熔渣的地方,并燃烧焦炭产生大量煤气,为高炉还原制造初始条件。

炉缸部位特别是风口区是高炉内温度最高的区域,其温度在1700~2000℃,炉底温度一般在1450~1500℃。

炉缸内衬除受高温作用外,还主要受到渣铁的化学侵蚀与冲刷,炉底主要以铁水的渗入侵蚀为主。

在铁水侵入的同时,碱和锌也侵入。

铁水侵入可引起耐火砖上浮,化学侵蚀可引起耐火砖脆化层的扩展,从而使高炉炉底耐火材料发生严重破坏。

这些部位要求耐火材料具有耐铁水侵蚀性、耐铁水渗透性、耐碱性、容积稳定性和适宜的导热性。

炉缸是高炉的重要部位。

该部位内衬破损的主要原因是:

⑴渣、铁水的侵蚀;

⑵碱金属的侵蚀;

⑶高温煤气流的冲刷;

⑷热应力的破坏;

⑸CO2、O2、H2O的氧化、侵蚀等。

这一部位内衬破损是多种因素综合作用的结果,既有化学的、热力的,也有机械的作用。

所以,炉缸用耐火材料的性能应满足如下要求:

⑴耐高温性,铁水温度1500℃左右,炉渣温度更高;

⑵耐侵蚀性,如高温炉渣的侵蚀,特别是渣中碱金属及氧化物时侵蚀性更强,其次是铁水的侵蚀,还有CO、CO2、H2O的侵蚀;

⑶耐冲刷、耐磨性;

⑷抗渗透性;

⑸高导热性。

炉缸风口带可采用刚玉-莫来石砖或棕刚玉砖、硅线石砖;在渣铁水接触的热面一般可采用陶瓷耐火材料即刚玉-莫来石砖或棕刚玉砖,在冷面选用致密炭砖或石墨化、半石墨化炭砖,也可选用小块微孔炭砖、模压炭砖;炉底选用半石墨炭砖、微孔炭砖,炉底找平层上面用一层石墨化炭砖。

随着高炉冶炼技术的发展,应用于该部位的新型耐火材料主要有烧成炭砖、热压炭砖、微孔炭砖、超微孔炭砖、碳复合SiC砖、半石墨化自焙炭块等。

我国宝钢、首钢、本钢等大型高炉先后引进美国UCAR公司的热压炭砖,取得了令人满意的效果。

“陶瓷杯”技术在国内也较多采用。

陶瓷杯是一种砌筑在高炉炉缸上,为了延长高炉寿命,降低热损耗的陶瓷质内衬。

它是以刚玉为基质,掺有或不掺有氧化铬添加剂的预制块,或是氮结合(賽隆)的砖制品及莫来石砖制品构成。

它们的导热性比炭质制品低。

在过去的20年里,高炉炉缸的工作条件发生了很大变化,要求高炉炉缸用耐火材料内衬须承受更加恶劣的生产条件,与此同时,依靠提高内衬材料的使用寿命,达到提高高炉经济效益的(和效率)目标。

传统上,炉缸主要使用碳质耐火材料,随着铁水温度的提高,高炉的产量也提高,将加速碳质耐火材料恶化的速度。

为了能适应高炉新的冶炼条件,现在有两种不同的观点,一种观点主张依据热力学,另一种观点主张依据耐火材料学。

热力学观点是以下列理论为依据:

受热面温度越低,耐火材料损毁越慢。

它强调通过高热导率的半石墨质炭块将热量传递给冷却系统。

从而实现热平衡。

同时,利用良好的导热性在炉缸内侧壁部位降低了工作面(热面)温度,并形成渣皮状附着物,将800℃等温线推至炭砖以外,保护炉缸内壁,实现炉缸系统的安全、高效、长寿。

如宝钢3号、4号高炉,太钢4350m3高炉、首钢1号高炉等,就是采用美国UCAR公司全碳质材料炉底、炉缸结构。

耐火材料学解决方法是根据众所周知的陶瓷底座,开发了新型的复合内衬,并在20世纪80年代初期砌筑使用。

最先采用该复合内衬的是Thyssen Stahl A.G.公司Hambo-rn和Ruhrort厂的两座高炉,因其外形为环状,故被称为“陶瓷杯”。

它强调在采用高热导率的炭块将炉缸热量传递给冷却系统的同时,通过增加具有耐高温、抗渣碱侵蚀、耐冲刷和良好的热震稳定性的陶瓷材料制成的陶瓷杯,将炉缸内的炭质材料与铁水及其它混合物分隔,从而在相当一段时间内杜绝了铁水对炭质材料炉缸的侵蚀,实现炉缸系统的安全、高效、长寿。

近年来,国内很多高炉炉底炉缸采用法国SAVOIE公司和日本电极公司碳质材料-陶瓷材料复合结构。

陶瓷杯具有下列优点:

⑴提高出铁温度。

陶瓷杯有隔热效果,减少了从炉底和炉缸壁辐射的热量。

因此,铁水能保持较高的温度从出铁口流出。

隔热效果取决于高炉炉壁的厚度、炉径及产量等的不同,使用陶瓷杯铁水温度可提高10~20℃之间。

温度更高的铁水有利于铁水往炼钢厂的运输。

但是应该注意:

由于含有同量的硅,焦炭的消耗量不会减少。

节约能源是指减少热损失而不是改善高炉的冶炼过程。

如果出铁的温度比常规低,那么应该是由于SiO2含量的降低。

导致焦比下降,从而提高了效益。

此外,因为降低了热损失,炉缸对降低温度运行极不敏感,这样从停产恢复到正常运行所需的时间较短,并且容易恢复。

⑵降低了铁水的渗透。

铁水的凝固温度是1150℃,而陶瓷内衬的内壁等温线很接近1150℃。

因为耐火材料的膨胀,耐火制品或预制块之间的连接缝会变小。

因此,渗入孔隙处的铁水是有限的,仅对耐火材料表面层的性质有所影响。

整个预制块仍保持完整的性能。

⑶“脆化层”的消除。

因为800℃等温线现在在陶瓷杯内部,所以,以前认为在碳质内衬的脆化层现已消除了。

这个消除不是理论上的假设,而是被实践所证明。

⑷出铁沟磨损的消除。

由于使用陶瓷杯,使炉底的深度加深了,这样以前在碳质内衬经常发生的出铁沟磨损,现在得到了很好的消除。

3.2.6 出铁口用耐火材料

小型高炉一般设置1个出铁口和2~3个出渣口中,大中型高炉则有2~4个出铁口和1~3个出渣口。

当铁矿石的品位较高时,渣量相应减少,大型高炉可不另设出渣口。

随着高炉日益大型化,出铁次数的频繁,导致出铁口负担过重,每个出铁口日出铁量有时高达3000t左右。

出铁口受到铁水、炉渣、碱的侵蚀和磨损;从出铁开始到出铁结束时温度变化的冲击;同时受到开铁口和堵铁口时的机械振动磨损。

因此,出铁口的工作条件极其苛刻。

过去出铁口使用的耐火材料有粘土质耐火砖、高铝质耐火砖,目前除继续使用上述耐火砖外,主要研究和使用性能优异的Al2O3-SiC-C质材料或炭块。

堵塞出铁口用的泥料称为炮泥。

炮泥应具有足够高的耐火度,并且要具备下列性能:

⑴可塑性和粘结性好,容易挤进填满空隙和裂纹。

⑵容易打开,保证铁水和熔渣能均匀流出。

⑶气孔率适宜,便于干燥时排出水分。

⑷高温体积收缩小,以免产生裂纹。

⑸烧结性能好,强度好,耐冲刷和耐侵蚀。

一般中小型高炉出铁口用的炮泥,主要是采用粘土熟料颗粒、焦粉和沥青混练而成的;而大中型高炉用的炮泥一般是用高铝质材料,并添加碳化硅和炭料等附加物质,以便稳定出铁口的深度。

3.2.7 不定形耐火材料在高炉上的应用

近十年来,国内外不定形耐火材料的发展非常迅速,品种不断增加,主要的品种有:

耐火浇注料、耐火可塑实、耐火捣打料、耐火喷涂料、耐火投射料、耐火涂抹料和耐火泥浆等。

不定形耐火材料对于延长炉衬寿命,提高设备的作业率、降低劳动强度以及简化耐火材料生产工艺等方面将起到促进作用。

在一些小高炉上,国内外采用耐火浇注料作高炉内衬,也能正常运行和达到一定的工作年限。

高炉内衬是生产中的薄弱环节,特别是炉腹和炉身下部等部位尤为突出,经常因为过早的毁损而被迫停炉大修、中修。

为此,各国广泛采用喷补、压入料修补和包扎维护等方法,以提高炉子的使用寿命。

3.2.8 碳质耐火材料在高炉上的应用

碳质耐火材料是指包括碳质、半石墨质及石墨质3个类别的耐火材料。

碳质耐火材料具有较好的导热性、高温体积稳定性及耐化学侵蚀性,虽然碳质耐火材料在一定温度条件下也和空气、二氧化碳、水蒸汽发生氧化反应,在较高温度下也会受铁水及碱金属的侵蚀,但腐蚀速度较低。

碳质耐火材料在耐火材料分类中通常称为“炭块”或“炭砖”,两者无本质区别,一般情况下是大尺寸产品称“块”,小尺寸产品称“砖”。

但大尺寸和小尺寸并无明确界限。

20世纪50年代以前,世界上大多数高炉的炉衬采用粘土砖砌筑,由于粘土砖很容易受到碱金属盐类的侵蚀,即使在较低温度下也能发生化学反应,因此高炉投入运行后,在化学反应的影响下,粘土砖的荷重软化温度和耐火度不断下降,导致粘土砖在冶炼过程中逐渐被熔蚀或砌体产生裂纹,所以采用粘土砖砌筑的高炉寿命较短,有时引发炉壁、炉缸或炉底烧穿事故。

20世纪50年代以后,炼铁高炉的炉底和炉缸大量使用碳质耐火材料,有的高炉炉腰、炉腹及下炉身也使用碳质耐火材料,采用碳质耐火材料以后,高炉炉役明显延长,很少发生炉底或炉缸烧穿事故。

但是,随着高炉大型化和强化冶炼技术的采用,炉衬耐火材料的工作条件越来越恶化,因此对炉衬耐火材料提出更高的要求。

70年代末,各国研制了多种新型碳质耐火材料用于高炉的各个部位,如高密度炭块、微孔炭块、半石墨化质炭块、石墨块、半石墨质-碳化硅块、高温模压炭块等,这些新型碳块(砖)各有各的优点和适用范围。

世界主要产铁国家的高炉采用碳质耐火材料的发展史见表3-5。

表3-5 世界主要产铁国家的高炉采用碳质耐火材料的发展历史

年份

美国

德国

英国

苏联

日本

中国

开始研究

1930

1890

 

 

1944

 

开始使用

1940

1920

1945

1944

1950

1957

推广

1955

1939

1949

1958

1960

1960

我国几座高炉内衬选用的耐火材料见表3-6。

表3-6 我国几座高炉内衬选用的耐火材料

炉号

宝钢4号

武钢6号

武钢1号

马钢2号

马钢3号

有效容积/m3

炉底结构

4350

陶瓷底垫

3200

陶瓷杯

2000

陶瓷杯

2545

进口陶瓷杯

907

炭块综合炉底

炉底

石墨砖、D级炭砖、塑性结合刚玉砖、刚玉泥浆、炭素捣打料、炭素泥浆

半石墨炭砖、微孔炭砖、莫来石砖、炭素捣打料、炭素泥浆

半石墨炭砖、微孔炭砖、高铝砖、炭素捣打料、炭素泥浆

半石墨炭砖、微孔炭砖、莫来石砖、炭素捣打料、炭素泥浆

半石墨炭砖、高铝砖、

炉缸

热压炭砖、致密粘土砖、炭素泥浆、粘土泥浆

微孔炭砖、微孔刚玉砖、炭素泥浆

半石墨炭砖、微孔炭砖、复合棕刚玉砖、高铝砖、炭素捣打料、炭素泥浆

微孔炭砖、半石墨炭砖、黄刚玉预制块、炭素捣打料、炭素泥浆

半石墨炭砖、高铝砖

炉腹

石墨砖、炭素泥浆、炭素捣打料

Sialon结合SiC砖、SiC泥浆

Sialon结合SiC砖、SiC泥浆

Si3N4结合SiC砖、冷却壁冷镶、莫来石喷涂料

Si3N4结合SiC砖、冷却壁冷镶、高铝砖

炉腰

石墨砖、炭素泥浆、碳化硅砖

Si3N4结合SiC砖、SiC泥浆

Si3N4结合SiC砖、SiC泥浆、压入泥浆

Si3N4结合SiC砖、SiC泥浆、SiC捣打料和喷涂料

Si3N4结合SiC砖、SiC泥浆和捣打料、高铝砖

炉身下部

石墨砖、炭素泥浆、碳化硅砖

Si3N4结合SiC砖、SiC捣打料、压入泥浆

Si3N4结合SiC砖、SiC缓冲料、压入泥浆

Si3N4结合SiC砖、SiC泥浆、SiC捣打料和喷涂料

Si3N4结合SiC砖、SiC泥浆和捣打料、高铝砖

炉身上部

石墨砖、炭素泥浆、碳化硅砖、

Si3N4结合SiC砖、SiC捣打料、缓冲料和泥浆、浸磷粘土砖、粘土泥浆、高铝质捣打料和缓冲料、铁屑填料

Si3N4结合SiC砖、SiC捣打料、缓冲料和泥浆、浸磷粘土砖、粘土泥浆、高铝质捣打料和缓冲料、铁屑填料

Si3N4结合SiC砖、SiC捣打料和泥浆、浸磷粘土砖、粘土泥浆

Si3N4结合SiC砖、SiC捣打料和泥浆、浸磷粘土砖、粘土泥浆

炉喉

自流浇注料、炭素填料、高铝喷涂料

炉喉钢砖(粘土质高强度浇注料)、铁屑填料

炉喉钢砖(粘土质高强度浇注料)、铁屑填料

普通粘土浇注料

普通粘土浇注料

铁口组合砖

 

刚玉-莫来石砖

刚玉-莫来石砖

黄刚玉预制块

塑性结合刚玉砖

风口组合砖

硅线石砖、高铝泥浆

刚玉-莫来石砖

刚玉-莫来石砖

刚玉-莫来石砖

高铝砖

备注

炉底水冷管部位用材料有炭素捣打料、耐热混凝土

炉底水冷管部位用材料有炭素捣打料、耐热混凝土

炉底水冷管部位用材料有炭素捣打料、耐热混凝土

炭素捣打料、粘土浇注料

炭素捣打料、粘土浇注料

3.2.9 各部位用耐火制品的理化指标、尺寸误差和要求

3.2.9.1 高铝砖

高炉用高铝砖是以高铝矾土熟料为主要原料制成的用于砌筑高炉的耐火制品,YB/T5015-1993将高炉用高铝砖按理化指标分为GL-65、GL-55、GL-48三种牌号,其理化指标、尺寸允许偏差及外观见表3-7和表3-8

表3-7 高炉用高铝砖的理化指标

项目

指   标

GL-65

GL-55

GL-48

ω(Al2O3)/%

≥65

≥55

≥48

ω(Fe2O3)/%

≤2.0

耐火度/℃

≥1790

≥1770

≥1750

0.2MPa荷重软化开始温度/℃

≥1500

≥1480

≥1450

重烧线变化率/%

1500℃,2h

0~-0.2

-

1400℃,2h

 

0~-0.2

显气孔率/%

≤19

18

常温耐压强度/MPa

≥58.8

49.0

透气度

必须进行此项检验,将实测数据在质量证明书中注明

表3-8 高炉用高铝砖的尺寸允许偏差及外观(mm)

项  目

指  标

尺寸允许偏差

长度

炉底砖

±2

其它砖

±1.5%

宽度

±2

厚度

±2

 

炉底砖

≤1

其它砖

≤1.5

缺棱、缺角深度

≤5

熔洞直径

≤5

裂纹长度

宽度≤0.25

不限制(不准成网状)

宽度0.26~0.50

15

宽度>0.50

不准有

 

3.2.9.2 粘土砖

高炉用粘土砖是以耐火粘土为原料生产的用来砌筑高炉内衬的粘土砖。

高炉用粘土砖用于大高炉炉身及小高炉炉衬的炉喉、炉身、炉底。

高炉用粘土砖要求常温耐压强度高,能够抵抗炉料长期作业磨损;在高温长期作业下体积收缩小,有利于炉体保持整体性;显气孔率低和Al2O3含量低,减少炭素在气孔中的沉积,避免砖在使用过程中膨胀疏松而损坏;低熔点物形成少,高炉用粘土砖比一般粘土砖具有优良性能。

YB/T5050-1993将高炉用粘土砖按理化指标分为ZGN-42和GN-42两种牌号,其理化指标、尺寸允许偏差及外观见表3-9和表3-10。

表3-9 高炉用粘土砖的理化指标

项  目

指   标

ZGN-42

GN-42

ω(Al2O3)/%

≥42

≥42

ω(Fe2O3)/%

≤1.6

≤1.7

耐火度/℃

≥1750

≤1750

0.2MPa荷重软化开始温度

≥1450

≤1430

重烧线变化/%(1450℃,3h)

0~-0.2

0~-0.3

显气孔率/%

≤15

≤16

常温耐压强度/MPa

≥58.8

≥49.0

透气度

必须进行此项检验,将实测数据在质量证明书中注明

 

表3-10 高炉用粘土砖的尺寸允许偏差及外观(mm)

项  目

指  标

尺寸允许偏差

长度

炉底砖

±2

其它砖

±1.0%

宽度

±2

厚度

±1

扭曲

炉底砖

≤345

≤1

>345

≤1.5

其它砖

≤1.5

缺棱、缺角深度

≤5.0

熔洞直径

≤3.0

裂纹长度

宽度≤0.25

不限制(不准成网状)

宽度0.26~0.50

15

宽度>0.50

不准有

渣蚀

不准有

 

 

 

表3-11 磷酸浸渍粘土砖的理化指标  

项  目

指 标

ω(Al2O3)/%

41~45

ω(P2O5)/%

≥7

ω(Fe2O3)/%

≤1.8

0.2MPa荷重软化开始温度/℃

≥1450

重烧线变化(1450℃,3h)/%

-0.2~0

显气孔率/%

≤14

常温耐压强度/MPa

≥60

抗碱性(强度下降率)/%

≤15

 

 

表3-12 磷酸浸渍粘土砖的

尺寸允许偏差及外观(mm)

项  目

指 标

尺寸允许偏差

长度

±2

宽度

±2

厚度

±1

扭曲

砖长≤345

≤1

砖长>345

≤1.5

裂纹长度

宽度≤0.25

不限制

宽度0.26~0.50

≤15

宽度>0.50

不准有

缺棱、缺角深度(a+b+c)

≤25

熔洞直径

≤3

 

3.2.9.3 磷酸浸渍粘土砖

高炉用磷酸浸渍粘土砖是砌筑高炉内衬用的磷酸浸渍粘土砖。

YB/T112-1997规定高炉用磷酸浸清粘土砖的代号为CLN-42,其理化指标,尺寸允许偏差及外观见表3-11和表3-12。

3.2.9.4 碳化硅砖

碳化硅砖是用碳化硅为主要原料烧制的耐火制品。

其主要特征是SiC为共价结合,不存在通常的烧结性,依靠化学反应生成新相达到烧结。

20世纪70年代SiC质耐火材料在国外高炉上使用后,取得了很好的使用效果,一代高炉寿命延长到10年或10年以上。

我国1985年在鞍钢6号高炉上首次使用Si3N4结合碳化硅砖获得成功,对SiC制品的研究与开发逐步深入,产品性能不断提高。

目前,我国高炉用优质碳化硅砖主要品种有:

Si3N4结合碳化硅砖,Sialon结合碳化硅砖和自结合(βSiC结合)碳化硅砖。

⑴Si3N4结合碳化硅砖。

Si3N4结合碳化硅砖是用SiC和Si粉为原料,经氮化烧成的耐火制品。

SiC、Si3N4都是共价键化合物,烧结非常困难。

在多级配的SiC颗粒和细粉中,加入磨细的工业硅粉,Si与N在高温下按下式进行烧结反应:

2N+3Si   Si3N4。

反应生成的Si3N4与SiC颗粒紧密结合而形成以Si3N4为结合相的碳化硅制品。

经研究发现,大多数Si3N4结合相为针状或纤维状结构,存在于SiC颗粒周围或孔隙处,Si3N4呈纵横交错的结构与SiC颗粒紧密结合,使这种新型的耐火材料具有很高的常温和高温强度。

YB4035-1991规定,高炉用氮化硅结合碳化硅砖按其理化指标将制品分为两类,分别为DTZ-1和DTZ-2。

标准规定制品的理化指标应符合表3-13的要求。

高炉用标准型号制品的尺寸允许偏差及外观应符合表3-14的规定。

高炉用非标准型号制品的尺寸允许偏差及外观要求,一般由供需双方协议来定。

 

 

表3-13 高炉用氮化硅结合

碳化硅砖的理化指标

项  目

指 标

DTZ-1

DTZ-2

显气孔率/%

≤17

≤19

体积密度/g·cm3

≥2.52

≥2.58

常温耐压强度/MPa

≥150

≥157

常温抗折强度/MPa

≥43.0

≥39.2

ω(SiC)/%

≥72

≥70

ω(Si3N4)/%

≥21

≥20

ω(Fe2

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2