细胞生物学笔记48页文档格式.doc

上传人:wj 文档编号:1289187 上传时间:2023-04-30 格式:DOC 页数:48 大小:195KB
下载 相关 举报
细胞生物学笔记48页文档格式.doc_第1页
第1页 / 共48页
细胞生物学笔记48页文档格式.doc_第2页
第2页 / 共48页
细胞生物学笔记48页文档格式.doc_第3页
第3页 / 共48页
细胞生物学笔记48页文档格式.doc_第4页
第4页 / 共48页
细胞生物学笔记48页文档格式.doc_第5页
第5页 / 共48页
细胞生物学笔记48页文档格式.doc_第6页
第6页 / 共48页
细胞生物学笔记48页文档格式.doc_第7页
第7页 / 共48页
细胞生物学笔记48页文档格式.doc_第8页
第8页 / 共48页
细胞生物学笔记48页文档格式.doc_第9页
第9页 / 共48页
细胞生物学笔记48页文档格式.doc_第10页
第10页 / 共48页
细胞生物学笔记48页文档格式.doc_第11页
第11页 / 共48页
细胞生物学笔记48页文档格式.doc_第12页
第12页 / 共48页
细胞生物学笔记48页文档格式.doc_第13页
第13页 / 共48页
细胞生物学笔记48页文档格式.doc_第14页
第14页 / 共48页
细胞生物学笔记48页文档格式.doc_第15页
第15页 / 共48页
细胞生物学笔记48页文档格式.doc_第16页
第16页 / 共48页
细胞生物学笔记48页文档格式.doc_第17页
第17页 / 共48页
细胞生物学笔记48页文档格式.doc_第18页
第18页 / 共48页
细胞生物学笔记48页文档格式.doc_第19页
第19页 / 共48页
细胞生物学笔记48页文档格式.doc_第20页
第20页 / 共48页
亲,该文档总共48页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

细胞生物学笔记48页文档格式.doc

《细胞生物学笔记48页文档格式.doc》由会员分享,可在线阅读,更多相关《细胞生物学笔记48页文档格式.doc(48页珍藏版)》请在冰点文库上搜索。

细胞生物学笔记48页文档格式.doc

(三)膜蛋白与膜脂的结合方式

大部分跨膜蛋白是以α螺旋构象横过脂双层。

分为单次跨膜蛋白、多次跨膜蛋白。

跨膜蛋白的疏水区域在脂双层内与脂类分子的疏水尾部相互作用,亲水的区域露在膜的两侧。

有些跨膜蛋白在细胞质侧的氨基酸(如半胱氨酸)残基共价结合脂肪酸链插入胞质面的脂单层中,加强了膜蛋白与脂双层疏水力的结合。

跨膜蛋白横跨脂双层的节段大部分是由非极性侧链的氨基酸残基所构成。

二、细胞膜的结构模型

(一)单位膜(unitmembrane)模型:

脂分子平行排列形成膜主体,蛋白质排列于两侧。

(二)流动镶嵌模型(fluidmosaicmodel):

脂类双分子层是膜的构架,球蛋白分子有的镶嵌在脂双层的表面,有的则部分或全部嵌入其内,有的横跨整个脂双层。

强调了膜的流动性和膜内蛋白质和脂类分子分布不对称。

同时指出,使膜分子聚集在一起主要是蛋白-蛋白、蛋白-脂类、脂类-脂类的相互作用,主要是疏水的和亲水的两种非共价键的相互作用。

(三)膜的不对称性与流动性

如果脂类的脂肪酸链短或具有双键,则膜较难成为晶态,因为短链减弱了脂肪酸链尾部的相互作用,使其不易聚集在一起。

在相变温度以上时,液晶态的膜脂总的是处于流动状态,而且膜脂分子具有不同形式的运动,膜蛋白也处于运动状态。

1,膜脂分子对流动性。

脂类分子的运动方式:

侧向扩散、旋转运动、翻转运动。

影响膜脂流动性的因素:

膜本身的组成成分、遗传因子及环境的理化因素。

(1)一定范围内温度升高流动性加强

(2)在相变温度以上,胆固醇可使磷脂的脂肪酸链末端的甲基运动减小,限制膜的流动性。

在相变温度以下,恰恰相反。

(3)膜脂脂肪酸链不饱和键的存在会降低膜脂分子间排列的有序性,增加膜的流动性。

(4)卵磷脂/鞘磷脂的比值逐渐下降,流动性随之降低。

2,膜蛋白运动性。

膜蛋白的运动方式:

侧向扩散、旋转运动。

影响因素:

(1)温度

(2)内在蛋白聚集形成复合体会使其运动减慢

(3)内在蛋白与外在蛋白、细胞骨架成分以及与膜脂分子的相互作用均能影响或限制其运动。

三,物质的跨膜运输

(一)被动运输(passivetransport):

顺浓度梯度。

1,简单扩散(simplediffusion):

不需要任何蛋白协助,物质从脂分子间直接穿过。

2,协助扩散(facilitateddiffusion):

(1)水通道(waterchannel),一些由跨膜蛋白组成的仅允许水穿过的通道。

(2)离子通道(ionchannel):

具有特异性、开关可调控性。

它又分为两种主要类型:

配体门通道(ligand-gatedchannel),细胞内外特定的物质与相应的通道蛋白结合发生反应,引起该门通道蛋白的一种成分发生构象变化,使门开放;

电压门通道(voltage-gatedchannel),由膜电位控制门的开关。

(3)载体蛋白(carrierprotein):

参与被动运输的一类跨膜蛋白分子,能与特定的分子结合通过膜。

载体有高度选择性,其上有结合点,只能与某一种物质进行暂时性、可逆的结合与分离,载体具有高度特异性。

且载体蛋白的运载速率存在饱和,具有竞争性抑制现象。

例如,葡萄糖的运输,结合点会从一侧转向另一侧,结合力变小。

(二)主动运输(activetransport):

逆浓度梯度,需能量供给和载体蛋白协助。

1,直接需要ATP提供能量,例如离子泵(ionpump)。

这类泵本身是一种载体蛋白,也是一种ATP酶。

它能催化ATP,由ATP水解提供能量,主动运输一些离子,例如钠钾泵、钙泵。

钠钾泵:

将细胞内的Na+泵出胞外,将细胞外的K+泵入胞内(3Na+-2K+)。

在泵周期中,进行可逆的磷酸化和去磷酸化,比如在膜内侧的Na+与酶结合激活了ATP酶的活性,使ATP水解,释放出高能磷酸基团与酶结合,酶的磷酸化引起酶的构象变化,于是与Na+结合位点转向膜外侧,这种磷酸化的酶对Na+亲和力低,对K+亲和力高,因而在膜外侧释放Na+,而与K+结合。

K+的结合促使酶去磷酸化恢复原状,与K+结合的位点转向膜内侧,这种构象对Na+亲和力高,对K+亲和力低,于是在膜内侧释放K+,而又与Na+结合。

2,间接需要ATP提供能量,例如协同运输(co-transport)。

例如动物细胞对葡萄糖和氨基酸的主动运输不直接利用ATP水解能,而是由于膜上的Na+-K+泵排出的Na+所产生的电化学梯度使物质进入细胞。

这一过程被认为膜上的Na+-K+泵和载体蛋白的共同协作。

这种过程进行时周围介质中需有高浓度的Na+,这种浓度的维持需要ATP。

协同运输有同向协同、逆向协同两种形式。

(三)内吞和外排:

二者均属于主动运输,因为需要细胞供给能量。

1,内吞(endocytosis):

当细胞摄取大分子时,首先被摄入物附于细胞表面,该处质膜凹陷分离下来形成小囊泡落入细胞内。

内吞作用是特异的,由受体介导。

在受体介导过程中一些特定的大分子结合到细胞表面受体,这些受体所处的质膜部位的胞质面,聚集多个蛋白形成的蛋白被,由于蛋白被的组装作用,该处的质膜凹陷称为有被小窝,有被小窝进一步凹陷,从膜上脱落下来形成有被小囊。

举例:

低密度脂蛋白(LDL)。

当动物细胞需要胆固醇进行细胞膜合成或其它代谢需要时,它就产生LDL受体蛋白并插入质膜内。

这些受体蛋白能自发地与有被小窝结合,LDL与LDL受体结合,内化被摄入细胞内成为有被小囊,然后脱去包被并与称为胞内体的小囊融合。

在胞内体较酸性的环境中,受体构象发生变化,LDL与受体分离,分到不同小囊。

含有LDL颗粒的小囊与溶酶体融合,在其内胆固醇酯被水解成游离的胆固醇,释放于胞液中。

LDL受体蛋白循环返回到质膜插入有被小窝用于下一轮结合。

构成有被小窝和有被小囊包被的蛋白质主要是包涵素,一般认为在内吞途径的质膜出芽和向外分泌途径的高尔基器膜出芽是由这种蛋白驱动的。

还有另外一类蛋白,接合素。

(包涵素看不出特异性,不同接合素则介导不同类型的受体。

受体大部分返回到原来的同一质膜的结构域,有些受体进入溶酶体被降解,还有些受体转到质膜不同的结构域(例如幼体从母乳中获得抗体)。

2,外排(exocytosis):

在细胞内从高尔基器反面形成的囊泡,流动到质膜,囊泡膜与质膜融合,囊泡膜的蛋白和脂类成为质膜的新成分,囊泡内的可溶性蛋白分泌到细胞外。

还有的外排作用中,运输囊泡到质膜处先不与质膜融合,当有外来信号刺激时才与质膜融合,释放其内容物到细胞外。

四,细胞连接

(一)紧密连接(tightjunction)(不与细胞骨架相联系):

是膜与膜间隙最小的一种连接,也是跨膜蛋白间相互作用形成。

主要存于上皮细胞间,它作为屏障可以阻止水和溶质从上皮细胞层的一侧扩散至另一侧。

有利于选择性吸收。

对于各种成分的阻挡是没有方向性的。

嵴索在细胞间形成网状结构。

在紧密连接中,Ca2+是必需的。

(二)锚定连接:

与细胞骨架相联系,使得细胞骨架通过其联系形成一个有机整体。

1,桥粒(desmosome):

与中等纤维相联系,由中等纤维、致密板、跨膜蛋白等组成。

是两个细胞相连接形成的“钮扣”式结构,相邻细胞各贡献该结构的1/2,它也是中等纤维的锚定位点。

跨膜蛋白为钙粘素蛋白。

半桥粒(hemidesmosome):

是上皮细胞与基底膜连接时形成的结构,跨膜蛋白为整合素蛋白。

2,粘合带(adhesionbelt)与粘合斑(adhesionplague):

与微丝相联系,跨膜蛋白分别为钙粘素蛋白和整合素蛋白。

(三)通讯连接(communicatingjunction)

1,间隙连接(gapjunction):

相邻细胞间有孔道的机构(2-3nm),一些无机离子和小的水溶性分子可以通过,满足细胞间的物质交流和信号传递。

基本组成单位:

连接小体,是由两个细胞共同形成的结构,由12(6+6)个蛋白组成,管状结构,在胞外完成对接。

在不同种中,连接小体蛋白有一定差异,还具有一定组织特异性。

这种连接受到调控,满足细胞活动的需要来调控开关,具有防护作用。

例如[Ca2+]的升高,pH的降低都会导致通道关闭。

2,胞间连丝(plasmodesmata):

植物细胞特有的细胞间通讯连接结构。

第三部分细胞质基质内膜系统

4.1细胞质基质(cytoplasmicmatrix)[胞液,cytosol]

细胞质:

细胞膜以内除细胞核之外的成分。

细胞质中除可分辨的细胞器以外的胶状物质称为细胞质基质。

4.1.1细胞质基质的主要组成成分

水(70%是水,多数为结合水),无机离子(Na+、K+、Ca2+、Mg2+、Cl-),脂类、糖类、氨基酸、核苷酸,蛋白质、脂蛋白、RNA、多糖,细胞骨架网络:

微管、微丝、中等纤维。

细胞质基质的重要特点:

1,高度有序,细胞骨架是重要的组织者。

2,多数大分子物质不是以溶解状态存在,而是结合于细胞骨架形成复合体。

4.1.2细胞质基质的功能

1,中间代谢的重要场所。

大部分中间代谢是在胞液中进行。

例如,糖酵解过程、磷酸戊糖途径、核苷酸、氨基酸、脂肪酸代谢的一定阶段都是在胞液中进行的。

糖原的部分分解过程,蛋白质和脂肪酸的合成也是在胞液中进行。

2,维持细胞内环境的稳定。

对pH有缓冲作用,为各种中间代谢反应提供适宜的微环境。

3,细胞器的定位,细胞骨架为细胞质基质中其它成分提供锚定位点。

4,蛋白质的合成、折叠、修饰、寿命控制,细胞质基质均有重要作用。

合成:

几乎所有的蛋白质合成起始于胞液中的核糖体,多数蛋白质是在胞液中完成合成,另一些则是转移到内质网中继续合成。

折叠:

分子伴侣,是一类在多肽折叠装配中与之结合的蛋白质。

例如,热休克蛋白(Hsp)。

Hsp70作用于蛋白质合成早期,Hsp60作用于蛋白质合成晚期。

从37℃-42℃过程中,Hsp含量急剧增加,防止或者修复了蛋白质的错误折叠。

修饰:

辅酶或辅基与酶的共价结合;

磷酸化与去磷酸化;

甲基化;

酰基化。

控制寿命:

通过识别蛋白质N-端的信号氨基酸来选择性降解蛋白质,在真核细胞的细胞质基质中为泛素化降解,泛素(ubiquitin)由76个氨基酸组成,具有多种生物学功能,它能识别N端不稳定的氨基酸信号,由多个泛素分子共价结合到不稳定蛋白N端氨基酸残基上,然后经一种依赖ATP的蛋白酶将蛋白质完全水解。

后一信号位于蛋白质N端的第一位氨基酸残基,如果它是Met、Ser、The、Ala、Val、Cys、Gly、Pro,则蛋白质是稳定的。

蛋白质降解信号的暴露方式:

磷酸化、障碍解除、产生不稳定端;

泛素连接酶的活化方式:

磷酸化、变构效应、蛋白亚基。

5,蛋白质分选:

指导每一个新合成的多肽到特定位置的过程,它是真核细胞组织和功能实现的关键过程。

它有三种基本途径:

门控运输,蛋白质通过核孔复合体在胞液和细胞核之间运输;

跨膜运输,由结合膜的蛋白转移器直接运输特异蛋白,例如蛋白质从胞液开始被运输到内质网腔或线粒体;

膜泡运输,被运输的物质由内质网或高尔基体加工成衣被小泡,选择性地运输到靶细胞器或者质膜。

分选信号:

结构中存在的分选信号序列或多肽引导结构域。

有两种主要类型:

信号序列(signalsequence),存在于蛋白质一级结构上的线性序列,一般位于N端,通常具有15-60个氨基酸残基,每一个信号序列决定特殊蛋白质的运转方向;

信号斑(signalpatch);

存在于完成折叠的蛋白质中,构成信号斑的信号序列可能不相邻,折叠一起构成分选信号。

细胞器

信号标签

内质网

信号肽

叶绿体

转运肽

过氧化物酶体

过氧化物酶体引导信号

线粒体

导肽

细胞核

核定位信号

液泡

液泡分选信号

信号肽功能鉴定方法:

基因工程和细胞转染方法(需要细胞的分级分离鉴定、免疫印记);

无细胞体系及生物化学法;

利用酵母突变体的方法。

4.2细胞内膜系统

内膜系统(cytoplasmicmembranesystem)为真核细胞所特有的,包括细胞内在结构、功能或发生上相互联系的有界膜的细胞器。

主要包括:

内质网、高尔基体、溶酶体、分泌泡以及植物细胞的液泡等。

细胞的内膜系统是一个动态的结构,各膜之间可以相互联系和互相转变,这种细胞内的膜性结构的定向转化称为膜流,有顺向、逆向两种。

核被膜分泌小泡质膜/胞壁内吞小泡

内质网高尔基体反面高尔基管网部分包被囊腔多小泡体

贮藏液泡溶酶体液泡

4.3内质网(endoplasmicreticulum,ER)

由封闭的单位膜及其周围围成的腔所形成的相互勾通的网状结构。

是真核细胞中最普遍、最多变、适应性最强的细胞器,通常占细胞膜系统一半左右的体积,约占细胞总体积的10%。

4.3.1内质网形态结构

(1)囊状内质网(又分为腔很大,腔很小呈现扁平状两种主要形式)

(2)管状内质网:

由分支状管道形成的较为复杂的立体构形。

(3)小泡状内质网:

较小的球形。

内质网是高度动态结构,几种结构间可以发生转换,并可以在细胞质中运动。

在动物细胞质中内质网运动与微管相关,在植物细胞之中与微丝相关。

4.3.2内质网的两种基本类型

(1)光面内质网(smoothER,sER):

表面没有核糖体结合,通常为分支状小管或小泡形成的立体管网状结构,在分泌类固醇激素的细胞中含量丰富。

(2)粗面内质网(roughER,rER):

表面呈囊状,排列较为整齐,表面上分布大量核糖体,在分泌细胞(例如分泌抗体的浆细胞)中较为发达。

4.3.3内质网的化学组成

(1)蛋白质:

ER膜中蛋白质含量比质膜多,很多是酶类。

(2)脂类:

30%-40%是磷脂。

(3)RNA:

主要来自于rER的核糖体

分离纯化内质网的基本步骤:

匀浆→初步离心(除去较大细胞器)→取上清再离心→取沉淀(沉淀中为微粒体),密度梯度离心。

4.3.4ER和其它细胞器之间的关系

(1)ER与细胞质膜关系密切,某些细胞向内折叠的质膜与ER相连接,推测在进化过程中ER是由质膜演变而来。

(2)ER与核膜的外层膜相连,推测核膜可能是由ER进化而来。

(3)ER与高尔基复合体关系密切,充满合成产物的ER管道缢裂成大量小泡,这些小泡移向高尔基复合体并将这些产物注入高尔基体的扁囊。

(4)在合成功能旺盛的细胞中,ER总是与线粒体紧密相依,因为在ER中合成蛋白质、脂肪、糖类,而线粒体则是能量的“供应站”。

4.3.5内质网的功能

细胞内蛋白质和脂类合成的重要基地,Ca2+在细胞质中浓度的调节器。

4.3.5.1粗面内质网

(1)蛋白质合成

分泌性蛋白质:

酶、抗体、激素、胞外基质

膜蛋白:

质膜、内质网、高尔基体、溶酶体上的膜蛋白。

需严格隔离的蛋白质:

溶酶体及ER、高尔基体中固有蛋白质。

信号假说:

分泌蛋白的N端序列作为信号肽,指导多肽和核糖体到ER膜,多肽在合成时通过ER膜进入ER腔,在蛋白质合成结束之前信号肽会被切除。

多种因子的协调作用:

信号肽(signalsequence):

主要用于识别SRP。

信号识别颗粒(signalrecognitionparticle,SRP):

6种多肽和1个小的RNA组成的复合物,325KD,既结合新生肽序列和核糖体,又与停泊蛋白结合,SRP与核糖体结合后翻译停止。

停泊蛋白(dockingprotein,DP):

结合于ER膜胞液面上的SRP受体,与SRP复合物结合后使SRP从核糖体上释放,翻译再度开始并通过ER膜上的蛋白转移器,使多肽链穿过膜。

蛋白转移器(translocator):

有孔道的蛋白复合体结构。

信号肽和信号识别颗粒引导多肽链进入内质网的基本过程:

SRP与信号序列和核糖体结合形成复合体,阻碍了多肽链进一步合成,翻译停止→SRP与其受体相互作用,核糖体与蛋白转移器相互作用,使整个复合体特异地结合到ER膜的胞质面→信号序列与蛋白转移器内部的位点结合触发通道构型改变,使通向ER腔的通道加宽→SRP脱离ER膜上的受体,翻译继续进行,多肽进入ER腔内。

转移结束,结合膜的核糖体释放,膜通道关闭。

(2)蛋白质转移

第一类:

具切割信号可溶性蛋白转移跨膜进入ER腔。

进入后处在N端的信号肽与转移器脱离,信号肽被切割,蛋白质发生折叠,形成可溶性蛋白。

第二类:

具有切割信号肽的单跨膜片断蛋白整合到ER。

具有跨膜信号序列。

跨膜信号序列在信号肽与转移器脱离时不再进入而定位在膜上,信号肽仍然被切割。

(-N先进入)

第三类:

具内信号肽的单跨膜片断蛋白整合到ER(-N正电)。

信号肽不在-N端,在序列中间,最终-C在内,-N在外,由内信号肽序列形成单次跨膜。

第四类:

具内信号肽的单跨膜片断蛋白整合到ER(-C正电)。

信号肽不在-N端,在序列中间,最终-N在内,-C在外,由内信号肽序列形成单次跨膜。

第五类:

具内信号肽的双跨膜片断蛋白整合到ER。

信号肽位于中间部位,有跨膜结构域,信号肽最终形成双次跨膜。

(3)新生多肽的折叠与组装

在ER腔里有许多蛋白质是暂时经过,但是也有呈高浓度存在的驻留在ER腔里的蛋白,称作驻留蛋白(ER-residentprotein),在这些蛋白质的C端有四个氨基酸(-Lys-Asp-Glu-Leu-COO-,KDEL),负责保留蛋白在ER腔中。

驻留蛋白主要有:

分子伴侣:

例如,Bip(结合蛋白)、Calnexin(钙联结蛋白)、Calreticulum(肌钙网蛋白)。

蛋白二硫异构酶:

使蛋白质半胱氨酸残基之间形成正确的二硫键。

还有一些未发生折叠的蛋白可以发出信号导致一些酶被激活,最终促使分子伴侣的基因表达,合成新的分子伴侣帮助这些蛋白完成正确的折叠;

另有一些未发生折叠的蛋白被ER排出,在细胞质胞质内被降解(泛素途径,在蛋白酶体作用下降解)。

(4)蛋白质的修饰

糖基化:

ER上合成的蛋白质多数是糖蛋白,是由糖类和蛋白质共价连接而成,通常蛋白质位于膜上,糖类位于膜外。

在ER腔里连接到蛋白质的寡糖主要的是由N-乙酰葡萄糖胺、甘露糖和葡萄糖组成的,这些寡糖总是与蛋白质的天冬酰胺侧链上的氨基基团连接。

这些N-连接的寡糖只是在ER腔中才加到蛋白质上。

寡糖在ER腔中的合成和加工是通过多萜醇的介导作用。

几乎是在新生肽链一出现在ER膜内表面,整个预先形成的寡糖就被转移到天冬酰胺的残基上。

(寡糖链最初是在内质网胞质面合成,之后翻转入胞内与合成的肽连接。

形成脂锚定蛋白:

ER上合成蛋白质通过酰基化同ER膜上的糖脂结合。

即,有些膜蛋白在进入ER腔之后,羧基端的跨膜尾部换成共价连接的糖基磷脂酰肌醇(GPI)锚。

这类锚蛋白合成后蛋白前体的疏水的羧基端序列仍锚定在ER膜上,其余部分在ER腔内,最终通过运输成为质膜外侧的糖蛋白。

羟基化:

Pro、Lys羟基化形成羟脯氨酸、羟赖氨酸,例如胶原蛋白。

4.3.5.2光面内质网

(1)合成脂类:

除了脂肪酸和两种线粒体磷脂之外,光面内质网能够合成建造新膜所需要的各种脂类,其中最主要的磷脂是磷脂酰胆碱(卵磷脂),还可以合成类固醇激素和脂蛋白。

步骤一:

合成。

3种酶:

酰基转移酶、磷酸酶、胆碱磷酸转移酶。

酶活性部位存在于内质网膜的细胞质基质一侧,合成磷脂的底物来自于细胞质基质。

步骤二:

转位。

新合成的磷脂在几分钟后由基质面转向ER腔面,这一过程有磷脂转位因子辅助。

步骤三:

转运。

主要有两种方式:

第一种,磷脂转移蛋白(PEP),例如,线粒体、叶绿体、过氧化物酶体;

第二种,出芽转运,例如高尔基体、溶酶体、质膜。

PEP的作用方式:

每一种磷脂转移蛋白仅能识别一种磷脂,它能从ER膜磷脂中提取单个分子,并将磷脂及其位点埋藏在其分子内,成为水溶性的复合物进入胞液,通过自由扩散碰到其它的膜,转移蛋白放出结合的磷脂分子到另一个脂双层。

(2)糖原代谢:

光面内质网上存在与糖原代谢有关的G-6-磷酸酶,它可以催化肝细胞中G-6-P(糖原降解产物)水解产生葡萄糖。

(3)解毒作用:

光面内质网上的细胞色素P450家族酶系能够催化多种化合物羟基化等加氧反应,起解毒作用。

(4)物质运输:

生物合成的产物可以进入ER腔,通过ER-高尔基体→分泌颗粒→胞外

(5)内质网(粗面、光面)是细胞内重要第二信使Ca2+的储存器。

4.3.6内质网的特化类型

髓样小体、环孔片层、肌质网

4.4高尔基复合体

潴泡(cisterna):

由光滑膜围成的扁囊。

高尔基堆(Golgistack):

成摞存在的潴泡。

高尔基体(dictyosome):

高尔基堆与其周围大小不等囊泡。

高尔基复合体(Golgicomplex)/高尔基器(Golgiapparatus):

若干个分散的高尔基体相互连接形成的网状结构。

4.4.1高尔基复合体的形态结构

顺面高尔基网(CGN)

顺面/中层/反面潴泡(cis/medial/transcisterna)

反面高尔基网(TGN)

具有生理极性的动物细胞其高尔基复合体一般位于核与细胞活动旺盛的一端,无脊椎动物和植物中高尔基复合体常散布于整个细胞。

顺面与反面结构的差别:

(1)顺面:

膜软、薄,厚约6nm,与内质网厚度接近。

(2)中层膜囊:

由扁囊与管道组成,形成不同间隔但在功能上是连续的完整的膜囊体。

(3)反面:

膜厚,约8nm,与细胞膜的厚度接近,形状呈管网状。

各层的标志性化学反应:

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 幼儿教育 > 育儿理论经验

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2