基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx

上传人:b****1 文档编号:1292093 上传时间:2023-04-30 格式:DOCX 页数:14 大小:31.95KB
下载 相关 举报
基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx_第1页
第1页 / 共14页
基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx_第2页
第2页 / 共14页
基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx_第3页
第3页 / 共14页
基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx_第4页
第4页 / 共14页
基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx_第5页
第5页 / 共14页
基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx_第6页
第6页 / 共14页
基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx_第7页
第7页 / 共14页
基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx_第8页
第8页 / 共14页
基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx_第9页
第9页 / 共14页
基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx_第10页
第10页 / 共14页
基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx_第11页
第11页 / 共14页
基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx_第12页
第12页 / 共14页
基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx_第13页
第13页 / 共14页
基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx_第14页
第14页 / 共14页
亲,该文档总共14页,全部预览完了,如果喜欢就下载吧!
下载资源
资源描述

基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx

《基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx(14页珍藏版)》请在冰点文库上搜索。

基于神经网络的双层辉光离子渗金属Word文档下载推荐.docx

Abstract:

Lowcyclefatiguetestsofsinglecrystalnickel-basedsuperalloyDD3wereconductedundermultiaxialnon-proportionalloadingat680℃and850℃,respectively.Thetestresultsshowthatmanyfactorsaffectlowcyclefatiguelifesignificantly.Basedonenergydissipationtheory,alowcyclefatiguelifepredictionmodelforsinglecrystalsuperalloywasproposedbyusingcyclicplasticitystrainenergyasaparameter.microstructurefeature,aγ/γ’two-phaseunitcellfiniteelementmodelwasestablished,anditscyclicstress-strainwassimulated.Calculationresultsofthemacroandthemicrofiniteelementmodel,andlowcyclefatiguetestdataat680℃and850℃wereappliedtofitthelowcyclefatiguelifemodelbymultiplelinearregressionanalysis.Theresultsshowthattheaccuracyoftheunitcellmodelisbetterthanthemacromodelsignificantly,andalltestdataoftwokindsoftemperaturefallintothefactorofandscatterband,respectively.

Keywords:

fatigue,unitcellmodel,finiteelementmethod,singlecrystalalloy,multiaxialnon-proportional

镍基单晶合金因其良好的高温抗疲劳和蠕变性能,已成为航空涡轮发动机热端部件的重要材料。

航空涡轮发动机热端部件不仅承受高温蠕变损伤,同时还承受因发动机启动、停机产生的交变载荷及温度变化而引起的低周疲劳(LCF)破坏。

特别是涡轮叶片根部的受力处于复杂应力状态,从而产生多轴低周疲劳损伤。

多轴应力状态下材料的疲劳损伤是较为复杂且非常困难的问题,特别是对镍基单晶合金各向异性材料在高温多轴应力状态下的低周疲劳性能研究和寿命预测,到目前为止在国际上亦是前沿性的研究热点。

国内外众多学者在这方面进行了大量研究[1-3]。

国内关于高温非比例加载多轴低周疲劳试验研究的文献仅限于各向同性材料。

文献[4]在室温下对304不锈钢非比例拉-扭低周疲劳试验进行了研究,对常用的几种各向同性材料多轴疲劳寿命预测模型进行了分析比较。

文献[5]对GH4169高温合金钢在650℃温度下进行应变控制的非比例循环加载高温拉/扭疲劳试验,研究了加载相位差与疲劳寿命之间的关系。

文献[6]分别对三种不同晶体取向的DD3单晶合金光滑试样和缺口试样在680℃温度下进行了对称和非对称循环载荷下的高温单轴低周疲劳试验研究,提出由总应变范围、晶体取向函数和非对称循环特征参量构成的循环塑性应变能作为疲劳损伤参量,建立了单晶合金低周疲劳寿命预测模型。

文献[7,8]对[001]晶体取向的DD3单晶合金缺口试样在620℃温度进行了单轴低周疲劳试验,建立了基于晶体滑移理论的疲劳寿命模型,在预测单晶合金的低周疲劳寿命时精度较高。

文献[9]运用弹塑性有限元数值模拟,对GH4169镍基高温合金在双轴比例与非比例拉/扭应变循环载荷下的光滑薄壁管件和缺口轴类件进行了研究,用KBM法和SWT法预测了缺口件的疲劳裂纹萌生寿命。

文献[10]对GH4169缺口试样在650℃下进行了高温拉/扭疲劳断裂实验,利用有限元分析软件计算试样缺口周围的应力应变场,确定出试样在各种载荷状态下的应力集中系数。

文献[11]则是对[001]取向CMSX-4镍基单晶合金圆柱光滑试样进行了热机械疲劳试验研究,基于单晶合金的γ/γ’双相微观结构,提出了预测单晶合金低周疲劳和热机械疲劳的微观力学模型。

文献[12]建立了CMSX-4镍基单晶合金单胞有限元模型,进行850℃和950℃温度下蠕变损伤有限元分析。

各向异性镍基单晶高温合金在非比例加载下的多轴低周疲劳试验研究,尚未见文献报道。

由于镍基单晶合金γ和γ’相组成成分不相同,热膨胀系数和力学性能都不同,因此有必要考虑微观结构热不协调性对材料力学性能的影响。

本文基于DD3单晶合金微观结构特性,建立了γ/γ’双相微观单胞模型,运用有限元对DD3单晶合金高温拉/扭非比例循环加载过程进行数值模拟,并与薄壁圆筒宏观试样有限元分析结果进行比较。

在此基础上,分析不同损伤参量与镍基单晶合金多轴非比例加载低周疲劳寿命的相关性,研究采用微观单胞模型提高疲劳寿命预测精度的可行性。

1疲劳试样制备与试验

试验材料选用DD3镍基单晶高温合金,其化学成分和常规力学性能分别见表1和表2。

表1DD3单晶合金成分(质量分数/%)

CompositionofDD3singlecrystalsuperalloy(mass/%)

Cr

Co

W

Mo

Al

Ti

C

Ni

Rest

表2DD3单晶高温合金材料常数

ValuesofelasticconstantsofsinglecrystalDD3

Temperature/℃

E/GPa

G/GPa

14mm11mm680℃850℃

25mm63268F

Temperature/(℃)

Phaseangle/(°

Maxaxialstrain/(%)

Minaxialstrain/(%)

Shearstrainamplitude/(%)

1

680

2

3

850

4

5

30

6

7

8

9

60

10

11

12

13

90

14

15

16

图2应变加载路径图3疲劳试验结果

StrainloadingpathNumberofcycletofailure

2实验结果与分析

全部试验数据的记录均由计算机自动完成,疲劳试验结果见图3。

表4中的应力范围是当循环次数为总循环次数一半时的值,k值的计算见式

(1)。

表4低周疲劳试验结果

Lowcyclefatiguedataofspecimens

Specimennumber

Maxstressrange(MPa)

Misesstressrange(MPa)

Maxstrainrange(MPa)

Misesstrainrange(%)

K

Axial

Shear

1170

1154

658

738

577

504

DD3单晶试样多轴非比例加载疲劳寿命与Mises等效应变范围和Mises等效应力范围的相关性如下表5、6和图4、5所示。

表5680℃模型表征参量与试验低周疲劳寿命的相关性

CorrelationoftestLCFlifewithfailureparametersat680℃

Modelparameters

Regressionmodel

R

表6850℃模型表征参量与试验低周疲劳寿命的相关性

CorrelationoftestLCFlifewithfailureparametersat850℃

图4疲劳寿命与等效应变范围的相关性图5疲劳寿命与等效应力范围的相关性

CorrelationoffatiguelifewiththeequivalentstrainrangeCorrelationoffatiguelifewiththeequivalentstressrange

由表6和图5可见,Mises等效应变与循环次数的相关系数比Mises等效应力高,这是由于材料进入塑性屈服后应变变化范围较大,而应力变化范围不明显的缘故。

850℃时两者与循环次数的相关系数比680℃时要低,说明温度对疲劳寿命的影响较为显着。

为了观察多轴非比例加载对疲劳寿命的影响,引入参量

(1)

式中,△σe为Mises等效应力范围,△σmax为轴向应力范围。

参量k在不同温度下与疲劳寿命之间的关系如图6、7所示,两者之间存在幂函数关系。

图6680℃疲劳寿命与参量k的关系图7850℃疲劳寿命与参量k的关系

Correlationoffatiguelifewithparameterkat680℃Correlationoffatiguelifewithparameterkat850℃

综上所述,在材料组织状态和环境温度一定的情况下,等效应变范围△εe、试验温度、等效应力范围△σe和参量k均对单晶合金的低周疲劳寿命有重要影响。

3疲劳寿命模型

基于能量耗散理论,综合考虑单晶材料多轴非比例循环加载过程,等效应变范围△εe、拉/扭载荷相位差、拉/扭载荷幅值之比和温度等因素对疲劳寿命的影响,可得到幂函数形式的立方单晶材料疲劳寿命回归模型

(2)

式中,Nf为疲劳寿命,A,α,β,γ为材料常数。

在多轴应力状态下,应力和应变范围都应按Mises等效应力和等效应变的公式计算。

4单胞模型多轴应力状态数值模拟

DD3镍基单晶合金是由基体γ相和沉淀相γ’组成,单胞模型的形状及尺寸如图8所示,图中l=516nm,R=58nm,d=67nm。

基体相和沉淀相的材料常数分别见表7。

表7DD3单晶高温合金材料单胞模型材料常数

ElasticconstantsofunitcellmodelforsinglecrystalDD3

Temperrture/℃

Yeildstress/MPa

HardeningmodulusH’/GPa

γ’

γ

700

1020

551

本文数值模拟使用ANSYS有限元分析软件,取双线性Hill硬化模型,采用正交各向异性非线性计算,各向异性参数K的取值为:

K=(680℃),K=(850℃)。

单胞有限元模型采用solid186单元,在需要施加切向应力的四个面上覆盖表面效应单元surf154,施加切向应力载荷。

单胞模型的单元划分情况如图9所示,整个模型共38051个节点,28052个单元。

图8单胞模型的形状及尺寸图9单胞有限元模型

TheshapeanddimensionsoftheunitcellmodelFiniteelementmodelofunitcell

单胞模型选用三角波加载。

对于双轴非比例加载,须考虑拉/扭载荷相位差。

本文使用ANSYS参数化设计语言APDL(ANSYSParametricDesignLanguage),根据不同的应变路径,计算循环加载过程中不同载荷步所对应的拉/扭应变载荷,编写命令流程序进行求解。

文献[13]考虑了单晶合金的各向异性特性,通过引入描述正交各向异性材料在偏轴受载时存在正应力和切应力耦合效应的应力不变量,得出了立方晶体单晶材料屈服准则及相应的弹塑性本构模型,具有较高的精度。

本文作者将它们编成有限元分析子程序,并将这个子程序集成到ANSYS结构分析软件中,对DD3镍基单晶合金疲劳试样进行拉-扭非比例循环载荷热弹塑性应力应变数值模拟,得到基体γ和沉淀相γ’的分析结果,以9号试样为例,图10~15分别显示的是基体和沉淀相的等效应力应变范围等值线图。

图10基体γ等效应力范围等值线图图11基体γ应变范围等值线图

EquivalentstressrangecontourofmatrixγEquivalentstrainrangecontourofmatrixγ

图12沉淀相γ′等效应力范围等值线图图13沉淀相γ′等效应变范围等值线图

Equivalentstressrangecontourofprecipitationγ′Equivalentstainrangecontourofprecipitationγ′

图14基体相γ(圆角处)等效应力范围等值线图图15沉淀相γ′(圆角处)等效应力范围等值线图

EquivalentstressrangecontourofmatrixγEquivalentstressrangecontourofprecipitationγ′

(roundanglesection)(roundanglesection)

已有的研究结果表明[11],镍基单晶发生疲劳破坏的部位一般在基体相γ上。

表8列出了单胞模型基体相γ中危险点单元的数值计算结果。

表8DD3单晶单胞模型有限元计算

Finiteelementcalculationresultsofunitcellmodel

Testnumber

Equivalentstressrange(MPa)

Equivalentstrainrange(%)

351

823

713

1349

682

对宏观试样进行有限元分析的结果在文献[14]中已详细介绍,所得相关数据如表9所示。

表9宏观试样有限元计算结果

Finiteelementcalculationresultsofmacrospecimens

863

714

将表9宏观和和表8微观尺度下数值模拟的结果分别与表4中的试验结果相比较,结果如图16所示,从图中可以看出单胞模型数值模拟的结果比宏观模型数值模拟的结果更接近试验数据,说明用微观单胞有限元模型来研究单晶材料在高温多轴非比例加载状态下的循环应力应变行为是可行的。

图16等效应力的试验值与数值模拟结果比较

MIsesstressvalueoftestcomparedwiththenumericalresults

5试验验证

利用表4、8、9的低周疲劳试验数据和数值模拟结果分别对

(2)式进行多元回归分析,得出模型回归方程如表10、11所示。

表10680℃时DD3单晶合金低周疲劳寿命回归模型

PowerlawoflowcyclefatiguelifeforDD3singlecrystalsuperalloyat680℃

Modeltype

Test

macro

micro

表11850℃时DD3单晶合金低周疲劳寿命回归模型

PowerlawoflowcyclefatiguelifeforDD3singlecrystalsuperalloyat850℃

图17给出了680℃时三种回归模型的偏差分布带,试验数据分别落在倍、倍和倍偏差分布带内,微观单胞寿命模型预测精度最高。

图18给出了850℃时三种回归模型的偏差分布带,试验数据分别落在倍、倍和倍偏差的分布带内,结果同样显示微观单胞寿命模型预测精度最高。

图17680℃DD3单晶试验寿命与宏/微观模型图18850℃时DD3单晶试验寿命与宏/微观模型

预测寿命比较预测寿命比较

ComparisonbetweentestfatiguelifeofDD3andComparisonbetweentestfatiguelifeofDD3andpredictedfatiguelifefrommicro/macromodelat680℃predictedfatiguelifefrommicro/macromodelat850℃

6结论

(1)基于镍基单晶合金微观结构特征,建立了γ/γ’双相微观单胞有限元模型,采用参数化程序设计语言APDL编写命令流程序,进行多轴非比例循环加载应力应变分析。

(2)基于微观单胞模型有限元分析所得到的计算结果与试验值相比误差较小,能很好地反映试样的试验应力应变情况,说明单胞模型是合理的。

(3)引入参量k表征多轴非比例加载对疲劳寿命的影响,参量k与循环寿命之间呈幂函数关系。

(4)以循环塑性应变能作为疲劳损伤参量,建立单晶合金多轴低周疲劳寿命预测模型,分别利用680℃和850℃镍基单晶合金多轴疲劳试验数据、宏观有限元模型计算数据和微观单胞有限元模型计算数据进行多元线性回归分析,试验数据分别落在、、和、、倍的偏差分布带内,与宏观有限元模型相比,微观单胞有限元模型在850℃高温时的预测精度显着提高,表明微观尺度下单胞模型能够更好地描述材料的力学性能,为研究镍基单晶合金疲劳寿命提供了一种新方法。

参考文献:

[1]NakamuraT,IshikawaT,AsadaY.Relaxationbehaviorof304stainl

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2