有线电视网络结构和HFC接入基础知识.docx

上传人:b****8 文档编号:13002862 上传时间:2023-06-10 格式:DOCX 页数:35 大小:301.87KB
下载 相关 举报
有线电视网络结构和HFC接入基础知识.docx_第1页
第1页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第2页
第2页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第3页
第3页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第4页
第4页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第5页
第5页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第6页
第6页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第7页
第7页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第8页
第8页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第9页
第9页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第10页
第10页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第11页
第11页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第12页
第12页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第13页
第13页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第14页
第14页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第15页
第15页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第16页
第16页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第17页
第17页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第18页
第18页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第19页
第19页 / 共35页
有线电视网络结构和HFC接入基础知识.docx_第20页
第20页 / 共35页
亲,该文档总共35页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

有线电视网络结构和HFC接入基础知识.docx

《有线电视网络结构和HFC接入基础知识.docx》由会员分享,可在线阅读,更多相关《有线电视网络结构和HFC接入基础知识.docx(35页珍藏版)》请在冰点文库上搜索。

有线电视网络结构和HFC接入基础知识.docx

有线电视网络结构和HFC接入基础知识

基于NGN的HFC接入网络报告提纲

 

 

第1章HFC产生

1.1背景

1.1.1有线电视网络基本特点

有线电视网和电话网是连接千家万户的两大网络,但是这两个网络的运行机制却是完全不同,在表1-1中对电话网与有线电视网进行了一个简单的比较,以加深对有线电视网络的认识:

表1-1电话网与传统有线电视网对比

电话网

传统有线电视网

传输信号形态

二进制基带信号

射频信号

复用方式

时分

频分

传输方式

点对点双向连接

点对多点单向广播

接入网网络结构

星型,点对点

树型/星型,共享

用户线

双绞线(约1MHz)

同轴电缆,(450MHz/550/750/860MHz)

我们可以看到,传统的有线电视网是一个单向广播网络,网络中传输经过调制的模拟射频信号,不同的电视频道信号在网络中占用不同的频点来区分开,其用户接入同轴电缆具有远远高于电话线的频谱带宽。

依赖于电视制式的不同,有线电视网络也有不同的标准之分,

制式

PAL

NTSC

应用场合

亚洲,欧洲

美洲

下行每个频道带宽

8MHz

6MHz

上行频谱范围

5~65MHz

5~42MHz

下行频谱范围

80~860MHz

54~860MHz

1.1.2有线电视网络演进过程

早期的有线电视网络是基于完全的同轴电缆的网络,随着有线电视产业和信息技术的发展,90年代初开始,在中国原有的同轴网络部分传输管道被改造为光纤,速率多为450/550MHz,就是我们通常所说的光纤同轴混合网,即HFC网(HybridFiberCoax)。

到90年代末期,原有的HFC网又掀起了一次改造浪潮,驱动力在于

i.原有HFC网络的老化需要更新

ii.用户数的急剧增加导致网络需要调整

iii.双向高速数据业务的驱动

iv.数字电视的发展对网络提出了更高的要求,交互式数字视频也提出了双向化的需求。

新改造网络的带宽多为750M/860MHz,与此同时,光节点越来越接近用户,光纤距离变长,同轴距离缩短,更重要的是,单向的HFC网络逐步被改造为双向HFC网,同时增加前端CMTS和终端CM,即可以提供宽带接入服务。

1.2现状

目前中国有线电视用户网络覆盖用户已经超过一亿,其中已经有约10%的网络进行了双向改造。

目前大中城市典型的单向网络结构:

1310二级光纤网

STB

TV-set

RF放大器

总前端

本地节目

卫星转播节目节目

数字电视节目

1550/1310一级光纤环网

逻辑结构:

星型,树型

分前端

分前端

分前端

光节点

光节点

1310二级光纤网

1310二级光纤网

经改造后小规模开展数据业务时,通常CMTS在总前端,典型组网如图所示:

1310二级光纤网

STB

TV-set

RF双向放大器

总前端

本地节目

卫星转播节目节目

数字电视节目

1550/1310一级光纤环网

逻辑结构:

星型,树型

分前端

分前端

分前端

光节点

光节点

1310二级光纤网

1310二级光纤网

Internet

CM

CM

CMTS

光节点

光节点

光节点

Cable

Router

随着数据业务规模增长,数据城域网建设完成,大规模开展数据业务的典型组网:

1310二级光纤网

STB

TV-set

RF双向放大器

总前端

本地节目

卫星转播节目节目

数字电视节目

1550/1310一级光纤环网

逻辑结构:

星型,树型

分前端

分前端

分前端

光节点

光节点

1310二级光纤网

1310二级光纤网

Internet

CM

CM

CMTS

CMTS

CMTS

数据城域网

光节点

光节点

Router

第2章二、HFC网络技术概要

2.1标准简介

2.1.1概述

网络发展的同时,标准的进展也非常迅速。

CableLabs组织制定的DOCSIS/EuroDOCSIS和PacketCable标准已经成为事实上的国际标准:

DOCSIS/EuroDOCSIS标准完善地定义了在HFC上进行高速数据通信的机制,并且得到非常成熟的应用。

PacketCable标准定义了基于DOCSIS标准所定义的双向高速HFC数据网开展实时业务的系统框架、协议体系、各个部件接口,基于该标准的业务目前处于规模实验局阶段。

中国广电总局标准化所正在制定《HFC数据传输标准》,目前已经到等待审查阶段,预计在今年底前会正式发布,从技术上该标准兼容EuroDOCSIS1.1/1.0。

中国广电标准化所已经发布上行通道建设标准《HFC网络上行传输物理通道技术规范》,该标准对指导双向改造有技术上的指导作用。

2.1.2DOCSIS/EuroDOCSIS演进和应用情况

1997年,CableLabs发布标准DOCSIS1.0,该版本定义了基于NTSC的有线电视网络的HFC的宽带数据接入的系统框架、通信协议(重点在MAC层和物理层),各个设备的接口,系统的管理维护接口。

随后,发布了基于PAL制的EuroDOCSIS1.0标准,该标准和DOCSIS1.0的核心完全一样,不同之处只是在于物理层频谱划分方案不同(参见第一章的说明)。

2001年,CableLabs发布了DOCSIS1.1/EuroDOCSIS1.1,该标准兼容DOCSIS/EuroDOCSIS1.0,增加定义了完善的QoS保障机制以支撑各种不同传输特点的业务,以及提高HFCMAC传输效率的级联和包头压缩机制。

2002年,在Terayon公司的大力推动下,CableLabs发布了DOCSIS2.0标准,该标准增加定义了上行物理层的SCDMA和ATDMA方式。

但是由于独家技术和作用不明显的原因,该跟随该标准的厂家很少,同时应用也不多。

DOCSIS/EuroDOCSIS在全球特别时北美、欧洲、韩国、日本得到广泛的应用,以北美为例,截至2002年底,CM用户已经达到1300万,是xDSL用户的2倍。

可以说,DOCSIS的数据应用已经非常成熟。

 

ResDSL用户数

CM用户数

总用户数

CM比例

美国用户数量

5,451,540

11,265,167

16,716,707

67.39%

加拿大用户数量

1,404,900

1,954,900

3,359,800

58.19%

北美总用户数量

6,856,440

13,220,067

20,076,507

65.85%

2.1.3PACKETCABLE标准演进和应用情况

CableLabs在2001年发布了PacketCable1.0,该标准定义了在DOCSIS1.1网络上传输话音的系统框架、呼叫信令、编解码、QoS机制、安全机制等。

到目前为止,仍然没有完全符合PacketCable商业VoIP应用,目前大多停留在规模实验局阶段,采用的技术通常是PacketCable的一部分。

下面列举部分海外运营商利用HFC提供VoIP业务的信息:

◆北美TimeWarner:

今年夏天开始fieldtest。

⏹Primaryline,市话+长途包月$39.95,目前支持911,没有后备电源,正在考虑线路馈电的可行性

⏹Second-line,基础价格$9.95,超出呼叫按时收费

◆北美CablevisionSystems:

今年夏天开始fieldtest

⏹Second-line,市话+长途包月$34.95

◆北美Comcast:

正在作Primaryline的fieldtest,覆盖18万家庭

◆北美Cox:

刚启动VoIP的fieldtest

◆欧洲callahan:

fieldtest,目前大概有8K用户,采用DOCSIS1.1和部分PacketCable技术。

2.2回传系统建设(噪声,回传躁声问题的的抑制,回传带宽的有效利用)

中国广电已经发布行业标准《HFC网络上线传输物理通道技术规范》,该标准可以有效指导双向改造。

事实上,由于技术的发展,上行通道噪声问题是可以解决的。

2.3双向数据实现原理――DOCSIS/EuroDOCSIS

2.3.1系统结构

HFC数据接入系统主要设备包括:

电缆调制解调局端设备CMTS(CableModemTerminationSystem)、操作支持系统OSS(OperationSupportSystem)和电缆调制解调器CM(CableModem)等。

CMTS:

HFC网络数据接入局端设备,是数据网络和HFC模拟射频网络的连接设备,主要完成网络数据的转发、协议处理以及射频调制解调等功能。

操作支持系统服务器(OSSServer):

OSS服务器提供网络的设备管理和CM的启动配置Provisioning服务器,OSS由DHCP、TFTP、ToD、LOG、SNMP服务器组成

CM:

连接HFC网和用户终端,主要完成的功能包括HFC网和用户数据网络(或者数据设备)之间的数据转发、协议处理以及调制解调等功能。

HFC数据接入系统基本结构如图所示:

图2-1HFC数据接入系统基本组成

2.3.2通信协议框架

DOCSIS定义的通信协议是基于IP的,CMTS和CM所支持的协议如图所示,在这个协议栈中,核心的部分在于基于HFC的物理层和MAC层通信协议。

CMTS可以作为二层或者三层的转发设备,CM为二层转发设备。

2.3.3物理层技术

利用HFC网构造通信网的基础技术是数字调制技术,即通过改变射频载波的相位、频率或者幅度,使射频的带通信号携带了丰富的二进制信息。

或者简单地说,数字调制技术就是二进制数字信号和模拟带通信号的一个转换技术。

数字调制也称为“键控”,常用的调制方法包括:

幅移键控(ASK),频移键控(FSK),相移键控(PSK)及它们的改进与变形。

其中由于相移键控(多相相移键控)具有较高的频谱利用率,较强的抗干扰性能而在通信系统中得到了广泛地应用,成为一种主要的调制方式。

特别是四相相移键控QPSK,下面就以QPSK为例来建立数字调制的基本概念。

QPSK是一种恒定包络的数字调制,这就意味着调制载波的相位随着调制信号的1或0而改变,而它的幅度是不发生变化的。

四相相移键控有四种不同的调制相位,每一种相位对应着不同的输入,分别为:

00、01、10、11。

表1-3QPSK的可能的相位对应表;

表2-1QPSK的相位对应表

二进制输入

QPSK

QI

00

01

10

11

输出相位

-135

-45

+135

+45

用调制信号的矢量端点分布图来表示调制情况的图称为星座图。

星座图中定义了一种调制技术的两个基本参数:

(1)调制信号相对于载波的幅度和相位的变化,星座点到原点的距离表示调制信号的幅度,星座点相对于水平正半轴的旋转角度表示调制信号相对于载波的相位变化;

(2)星座点与调制数字比特之间的对应关系,称为“映射”,即每个星座点对应多个比特的二进制信息。

一种调制技术的特性可以由信号分布和映射关系来完全定义,也就可以由星座图来完全表现。

QPSK调制方式的星座图,如图1-5所示:

图2-2QPSK调制方式的星座图

QPSK调制只利用了载波的相位,所以它的星座点只分布在半径相同的圆周上。

为了进一步增加传输信号的数据率,提高频谱的利用率。

HFC数据接入系统中还采用了正交幅度调制(QAM)。

QAM是对载波的振幅和相位同时进行数字调制的一种复合调制方式。

例如,图1-6是64QAM的星座图:

图2-364QAM的星座图

64QAM的星座图中有64个星座点,每个星座点映射了6个比特,同时这些星座点也对应了载波的64种幅度和相位的不同组合。

在调制解调的过程中,就是根据星座图来对载波信号和信息数据比特来进行转换的。

相似的,M-QAM即正交幅度调制中载波矢量的端点个数为M。

其中M可以等于4,16,32,64,128……等等。

M-QAM的调制方式可以调制(log2M)个比特。

当M=4时,4QAM和QPSK的星座图相同。

M-QAM同时利用了载波的幅度和相位来传递信息比特,因此在最小距离相同的条件下,QAM星座图中可以容纳更多的星座点,可实现更高的调制效率和频带利用率。

各种不同的调制方式具有不同的抗干扰性能。

调制方式的抗干扰性可由相邻星座点之间的最小距离来衡量,最小距离越大,抵抗噪声等干扰的能力越强。

QAM调制的星座点之间的最小距离小于PSK方式,所以其抗干扰性不如PSK方式。

比如,要同样达到10-7误码率,256QAM方式要求的信噪比要远高于QPSK方式。

各种调制方式与误码率之间的对应关系见图1-7:

图2-4调制方式和误码率

在HFC数据接入系统中,上行信道的噪声干扰较为严重,所以采用了抗干扰性能较强的QPSK或16QAM作为其调制方式;下行信道的传输环境比较理想,数据传输的需求也相对较大,所以可以采用调制效率较高的64QAM或256QAM调制方式。

表1-4表示了在HFC系统中采用的各种调制方式与传送的数据率的对应关系:

调制方式

带宽

符号率

数据速率

净载速率

下行

QAM-2568b/Sym

6MHz

5.36MSps

42.88Mbit/s

约38Mbit/s

8MHz

6.952MSps

55.62Mbit/s

约51Mbit/s

QAM-646b/Sym

6MHz

5.057MSps

30.34Mbit/s

约27Mbit/s

8MHz

6.952MSps

41.7Mbit/s

约36Mbit/s

上行

QAM-164b/Sym

0.2MHz

0.16MSps

0.64Mbit/s

约0.5Mbit/s

0.4MHz

0.32MSps

1.28Mbit/s

约1.1Mbit/s

0.8MHz

0.64MSps

2.56Mbit/s

约2.3Mbit/s

1.6MHz

1.28MSps

5.12Mbit/s

约4.6Mbit/s

3.2MHz

2.56MSps

10.24Mbit/s

约9Mbit/s

QPSK2b/Sym

0.2MHz

0.16MSps

0.32Mbit/s

约0.288Mbit/s

0.4MHz

0.32MSps

0.64Mbit/s

约0.575Mbit/s

0.8MHz

0.64MSps

1.28Mbit/s

约1.15Mbit/s

1.6MHz

1.28MSps

2.56Mbit/s

约2.3Mbit/s

3.2MHz

2.56MSps

5.12Mbit/s

约4.6Mbit/s

表2-1数据调制方式和速率对照表

我们可以看到,HFC支持多种带宽的上行信号,这样可以给设备提供更多的选择,在不同的噪声环境下采用不同的带宽。

同时我们可以看到每个上行通道的带宽和传输速率都低于下行通道,在实际产品设计中,CMTS通常设计为1下4上或者1下6上,以取得上下行速率的对称。

2.3.4MAC层技术

由于HFC这种介质的特点,其MAC层技术是非常独特的:

首先看看下行通道:

我们知道有线电视网络是频分复用的网络,同样的,CMTS下行输出信号间或者CMTS输出信号和有线电视信号间是通过不同频谱来区分的。

由于一个CMTS的下行信号会发给多个CM,所以在信道内部则是采用时分复用的方式。

因为HFC网络是向下广播的网络,所以下行MAC控制是非常简单的,CMTS将下行报文打到MPEGII的幀中发送,CM作为二层转发设备,有选择地接受目的地址是该CM的或者该CM所带的CPE的报文。

CMTS

CM

CM

CM

MPEG数据流

HFC网络上行通道间通常通过频分或者空分(星型组网、线路隔离)的方式来区分,对于同一个信道内部的不同CM间的数据发送,仍然采用时分复用的方式,但是由于上行数据,实际上是一种多点到一点的模式,所以多个CM间必须存在调度机制,使多个CM能够有序的发送数据,DOCSIS1.0定义了这样一种模式:

所有上行通道时间由CMTS统一管理和分配,CMTS和CM存在MAC管理报文。

CM在发送数据之前必须先公共时段发送申请报文,CMTS接受到申请报文后,通过算法调度,将时间端分配给合适的CM,并将所有上行通道的时间段分配信息在下行通道广播,CM受到该报文,并在指定的时间段发送数据,这样CM间就不会发生发送碰撞的可能了。

的道端SII的基础技术就OCSIS1.0当然公共时段的申请报文发送是存在碰撞可能的,DOCSIS定义了类似于802.3以太的碰撞退避机制。

CMTS

CM

CM

CM

(1)申请

发送时隙

(2)分配时隙

(3)发送数据

当然这种申请――分配――发送的机制无法提供QoS保证,所以在DOCSIS1.1标准里又详细定义了QoS保证的机制。

HFC的QoS保证机制基于面向连接的方式,通过CM的配置文件定义特定业务流SF的分类原则和QoS参数,在适当的时候,CM或者CMTS申请增加该业务流或者激活业务流,一旦该业务流激活,CMTS将自动定时为该CM的SF分配符合QoS参数的时间段,在适当的时候,CMTS或者CM也可以申请删除该业务流。

举一个例子,如果某个CM需要支持VoIP业务,则可以在CM配置文件中为该CM配置一个UGS类型的业务流,一旦该业务流激活,CMTS自动每隔10ms为该SF分配一定长度的时间段,CM将话音包在该时间段内发送,这样可以在HFC段获得非常接近PSTN的质量保证。

CMTS

CM/MTA

(4)CMTS根据SF1参数,自动定时为CM分配合适的时间段

(2)申请增加保证服务质量的业务流(SF1)

(3)申请激活SF1

OSS

(1)配置文件下发授权的保证服务质量的业务流SF1

DOCSIS1.1所定义的上行业务流类型包括:

类型

说明

应用举例

UGS

定时分配固定长度时隙

VoIP

UGS-AD

定时分配固定长度时隙,带静音检测

VoIP,支持静音检测

Rt-Polling

定时分配申请时隙

IP视频业务

Nrt-Polling

不定时分配申请时隙

FTP等应用

BestEffort

尽力传送

宽带数据

2.3.5终端启动配置

DOCSIS定义了完善的CM启动配置流程,在这个过程中,CM真正成为一个零配置的设备,所以的运行参数都是通过上电启动配置流程动态获取。

这个定义是HFC网络终端成为可以管理的终端,对HFC接入的规模应用起到了非常重要的作用。

2.3.6CMTS管理

DOCSIS标准还定义了CMTS和CM的SNMP网管MIB。

2.4话音业务实现原理――PacketCable

2.4.1系统结构

PacketCable定义的系统结构如下图所示,系统中除了DOCSIS1.1所定义的CMTS和CM,还包括呼叫管理服务器CMS(通常的产品形态就是SOTFX)、媒体网关控制器MGC、媒体网关MG、信令网关SG、一系列服务器组成的OSS服务器和媒体终端适配器MTA(类似IAD)。

终端形态通常包括两种:

E-MTA和S-MTA。

所谓EMTA,是将CM和MTA集成在一起的终端设备,所谓S-MTA是指单独的MTA设备。

实际上,迄今为止,PacketCable只是对基于E-MTA的组网作了各个接口的详细定义。

2.4.2呼叫信令

PacketCable定义E-MTA和CMS之间的呼叫信令为NCS,NCS是基于MGCP1.0,针对Cable应用和QoS需要,做了少量的限制和扩展而成。

2.4.3DQoS方案

PacketCable定义了基于DOCSIS1.1实现动态QoS的机制:

CMS内置QoS策略模块GC(类似于策略服务器),CMTS内置Gate模块,在话音信令变化过程中,CMS感知到动态信令状态的变化,并通过COPS接口向CMTS进行基于该业务的QoS授权;E-MTA感知到信令变化后在适当的时候向CMTS发起DOCSIS1.1SF连接增加或者激活申请,CMTS依据CMS授权信息接纳或者拒绝EMTA的申请。

CMS

GC

CMTS

E-MTA

Gate

COPS,

CMS感知业务并向CMTS作动态QoS授权

DOCSIS1.1,

终端感知业务并发起维护QoS保证的业务流连接

2.4.4EMTA启动配置流程

EMTA启动配置包括两部分:

CM启动配置和MTA启动配置。

CM启动配置流程参见前面DOCSIS的介绍

MTA的启动配置过程见下图所示,同样的,这个定义是全球最早的针对NGN终端启动流程的详细定义,将对VoIP规模应用起到重要的作用。

MTA

KDC

Server

DNS

Server

TFTP

Server

DHCP

Server

Provisioning

Server

(1)获取IP地址及域名

(2)解析KDC地址

(3)获取密钥

(4)生成配置文件并配置TFTP服务器名,路径,配置文件文件名

(6)下载配置文件

(5)解析TFTP服务器IP地址

当我被上帝造出来时,上帝问我想在人间当一个怎样的人,我不假思索的说,我要做一个伟大的世人皆知的人。

于是,我降临在了人间。

我出生在一个官僚知识分子之家,父亲在朝中做官,精读诗书,母亲知书答礼,温柔体贴,父母给我去了一个好听的名字:

李清照。

小时侯,受父母影响的我饱读诗书,聪明伶俐,在朝中享有“神童”的称号。

小时候的我天真活泼,才思敏捷,小河畔,花丛边撒满了我的诗我的笑,无可置疑,小时侯的我快乐无虑。

“兴尽晚回舟,误入藕花深处。

争渡,争渡,惊起一滩鸥鹭。

”青春的我如同一只小鸟,自由自在,没有约束,少女纯净的心灵常在朝阳小,流水也被自然洗礼,纤细的手指拈一束花,轻抛入水,随波荡漾,发髻上沾着晶莹的露水,双脚任水流轻抚。

身影轻飘而过,留下一阵清风。

可是晚年的我却生活在一片黑暗之中,家庭的衰败,社会的改变,消磨着我那柔弱的心。

我几乎对生活绝望,每天在痛苦中消磨时光,一切都好象是灰暗的。

“寻寻觅觅冷冷清清凄凄惨惨戚戚”这千古叠词句就是我当时心情的写照。

最后,香消玉殒,我在痛苦和哀怨中凄凉的死去。

在天堂里,我又见到了上帝。

上帝问我过的怎么样,我摇摇头又点点头,我的一生有欢乐也有坎坷,有笑声也有泪水,有鼎盛也有衰落。

我始终无法客观的评价我的一生。

我原以为做一个着名的人,一生应该是被欢乐荣誉所包围,可我发现我错了。

于是在下一轮回中,我选择做一个平凡的人。

我来到人间,我是一个平凡的人,我既不着名也不出众,但我拥有一切的幸福:

我有温馨的家,我有可亲可爱的同学和老师,我每天平凡而快乐的活着,这就够了。

天儿蓝蓝风儿轻轻,暖和的春风带着春的气息吹进明亮的教室,我坐在教室的窗前,望着我拥有的一切,我甜甜的笑了。

我拿起手中的笔,不禁想起曾经作诗的李清照,我虽然没有横溢的才华,但我还是拿起手中的笔,用最朴实的语言,写下了一时的感受:

人生并不总是完美的,每个人都会有不如意的地方。

这就需要我们静下心来阅读自己的人生,体会其中无尽的快乐和与众不同。

“富不读书富不久,穷不读书终究穷。

”为什么从古到今都那么看重有学识之人?

那是因为有学识之人可以为社会做出更大的贡献。

那时因为读书能给人带来快乐。

自从看了《丑小鸭》这篇童话之后,我变了,变得开朗起来,变得乐意同别人交往,变得自信了……因为我知道:

即使现在我是只“丑小鸭”,但只要有自信,总有一天我会变成“白天鹅”的,而且会是一只世界上最美丽的“白天鹅”……

我读完了这篇美丽的童话故事,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 总结汇报 > 工作总结汇报

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2