核电站反映堆冷却剂系统讲义.docx

上传人:b****8 文档编号:13075118 上传时间:2023-06-10 格式:DOCX 页数:112 大小:1.08MB
下载 相关 举报
核电站反映堆冷却剂系统讲义.docx_第1页
第1页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第2页
第2页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第3页
第3页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第4页
第4页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第5页
第5页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第6页
第6页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第7页
第7页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第8页
第8页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第9页
第9页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第10页
第10页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第11页
第11页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第12页
第12页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第13页
第13页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第14页
第14页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第15页
第15页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第16页
第16页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第17页
第17页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第18页
第18页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第19页
第19页 / 共112页
核电站反映堆冷却剂系统讲义.docx_第20页
第20页 / 共112页
亲,该文档总共112页,到这儿已超出免费预览范围,如果喜欢就下载吧!
下载资源
资源描述

核电站反映堆冷却剂系统讲义.docx

《核电站反映堆冷却剂系统讲义.docx》由会员分享,可在线阅读,更多相关《核电站反映堆冷却剂系统讲义.docx(112页珍藏版)》请在冰点文库上搜索。

核电站反映堆冷却剂系统讲义.docx

核电站反映堆冷却剂系统讲义

 

核电站

 

反映堆冷却剂系统讲义

 

本讲义是针对一回路及相关辅助系统的学习。

所包括的内容要紧分三个方面:

一回路主回路系统(RCP),一回路辅助系统(RCV、REA、RRA、PTR),核平安系统(RIS、EAS、ASG)等。

故咱们的学习应该从这三方面入手分系统的把握。

本教材在详细介绍OJT206所涉及的系统的基础上结合现场有关操作使大伙儿对OJT206的知识有一个全面的了解。

第一章、反映堆冷却剂系统(RCP)

反映堆冷却剂系统是核电站的重要关键系统。

它集中了核岛部份除堆本体外对平安运行相当紧要的要紧设备。

反映堆冷却剂系统与压力壳一路组成一回路压力边界,成为避免放射性物质外泄的第二道平安屏障。

核电站通常把核反映堆、反映堆冷却剂系统及相关辅助系统合称为核蒸汽供给系统。

大亚湾压水堆电站一回路冷却剂系统由对称并联到压力壳进出口接管上的三条密封环路组成。

每条环路由一台冷却剂主泵、一台蒸汽发生器和相应的管道、阀门组成。

整个一回路共用一台稳压器和与其相当的卸压箱。

反映堆冷却剂系统的压力依托稳压器的电加热元件和喷雾器自动调剂维持稳固。

一、RCP系统的要紧平安功能和要求

RCP系统的要紧功能是利用主泵差遣一回路冷却剂强迫循环流动,将堆芯核燃料裂变产生的热量带出堆外,通过蒸汽发生器传给二回路给水产生蒸汽,冷却剂在导出堆芯热量的进程中冷却堆芯,避免燃料元件棒烧毁。

压力壳内冷却剂还兼作堆芯核燃料裂变产生的快中子的慢化剂和堆芯外围的中子反射层。

冷却剂水中溶有硼酸,因此堆内含硼冷却剂又可作为中子吸收剂。

依照工况需要调剂冷却剂中含硼浓度,可配合操纵棒组件用以操纵、补偿堆芯反映性的转变。

系统内的稳压器用于操纵一回路冷却剂系统压力,以避免堆芯产生偏离泡核沸腾。

当一回路冷却剂系统压力太高时,稳压器平安阀那么能实现超压爱惜。

当发生作为第一道平安屏障的燃料元件棒包壳破损、烧毁事故时,RCP系统的压力边界可作为避免放射性物质泄漏的第二道平安屏障。

为此,对RCP系统平安功能和设计的要求是:

1.系统应提供足够的传递热量的能力,能将堆芯产生的热量带出并传给二回路介质。

2.在正常运行及预期瞬态工况下能对堆芯提供适当的冷却,并保证足够的烧毁余量,避免发生燃料包壳损伤。

在事故工况下,为保证反映堆具有冷源,系统的布置要能够使冷却剂淹没堆芯并形成充分的自然循环,以导出堆芯余热,幸免燃料超过温度极限。

3.系统应做到冷却剂中含硼浓度均匀;能限制冷却剂温度转变的速度,以保证不显现由这些因素而引发的反映性转变失控。

4.RCP压力边界应能适应与运行瞬态工况相应的温度、压力,并留有余度。

5.任一冷却剂环路管道断裂,可不能致使其他管道的损坏,并仍能确保堆芯的冷却。

6.主泵应能提供足够的流量以知足热量转移和堆芯冷却要求。

系统和主泵在事故状态下应具有足够的惯性流量;即便在一台主泵转子卡死时也不阻碍堆芯冷却。

7.蒸汽发生器是系统中唯一与二回路存在交壤面的设备,因此要求蒸汽发生器的管子、管板的边界面尽可能幸免将堆芯产生的放射性物质泄漏到二回路系统。

8.应能对系统进行泄漏检测。

对预料的泄漏,如压力壳密封、主泵及某些阀杆的密封,应通过引漏系统进行搜集,避免一回路冷却剂释放到平安壳空间。

9.稳压器应能维持系统正常运行压力,在电站负荷转变和冷却剂温度、体积转变时,压力能被限制在规定的范围内。

在电站满功率下甩负荷而反映堆功率未能及时跟踪情形下,反映堆与汽轮机功率失配而引发系统压力上升时,稳压器超压爱惜应能及时动作。

平安阀的排放能力应能使压力波动限制在规定范围内。

10.全数RCP系统压力边界设备应依照相应平安一级的标准要求,在设计、选材、加工组装、安装调试及运行中遵循最高的质量要求。

二、RCP系统说明

主系统描述

大亚湾核电站压水堆具有三条相同的传热环路。

每条环路设一台主泵、一台蒸汽发生器。

运行时,主泵强迫冷却剂在压力壳及环路内循环流动。

被堆芯加热的冷却剂从压力壳出口接管流出,进入蒸汽发生器,将热量传递给二回路介质,然后通过主泵将冷却剂由压力壳入口接管压入堆芯,如此重复循环。

位于压力壳出口和蒸汽发生器入口之间的管段称为环路热段,主泵与压力壳入口之间的管段为环路冷段。

蒸汽发生器与主泵间的管段为过渡段。

RCP系统还包括一个稳压器及其与之相关的卸压箱和冷却剂压力操纵、超压爱惜设备。

稳压器通过波动管接到1号环路的热段(图2—1)。

 

三、RCP系统运行工况

大亚湾核电站压水堆运行工况有冷停堆、中间停堆、热停堆、热备用和功率运行五种。

其中冷停堆又可分为换料冷停堆、维修冷停堆和正常冷停堆三种;中间停堆可分为单相中间停堆、两相中间停堆和正常中间停堆三种。

因此也能够以为其运行工况共有九种。

各类运行工况分类要紧受反映堆临界状态、RCP系统运行方式、反映堆及一回路系统冷却剂温度、压力等条件制约。

运行工况

一、换料冷停堆

换料冷停堆是指反映堆改换核燃料操作时的停堆运行方式,部份一回路压力边界维修也可在现在进行。

此工况的反映堆处于次临界,停堆深度大于5000pcm,冷却剂硼浓度不小于2100ppm,所有操纵棒插入堆芯。

压力壳顶盖打开,堆内上部构件移出。

一回路冷却剂压力为大气压,温度在10~60℃之间。

设置温度低限是为了幸免冷却剂内硼酸结晶;高限是为了便于堆顶装卸料操作。

冷却剂温度操纵及硼浓度均匀化由RRA系统进行(至少投入一台泵和一台热互换器),PTR系统作备用。

冷却剂化学和容积操纵由RCV、REA及PTR系统完成。

换料水池水位高于压力壳法兰面8.5m,以保证换料进程有足够的生物屏蔽。

已采取防硼酸稀释隔离方法。

停堆状态中子通量高报警系统投入,其报警定值为停堆测量值的2~3倍。

二、维修冷停堆

维修冷停堆是指许诺对一回路部份设备进行维修的停堆运行方式。

此工况一回路打开(稳压器人孔打开作为标志),压力等于大气压。

冷却剂平均温度在10~70℃之间。

回路维修部份依照需要水被排空,但RCP系统水位不能低于保证RRA系统泵正常运行所要求的低限值。

在接近低水位限值状态时,冷却剂最高温度被限制在60℃。

其余要求条件与换料冷停堆工况相同。

3、正常冷停堆

此工况要求反映堆处于次临界状态,停堆深度大于1000pcm,除停堆棒组(S棒组)和温度棒组(R棒组)外,其余操纵棒组插入堆芯5步处。

RCP系统封锁(稳压器人孔已盖封,但排气疏水系统(RPE)可投用),压力在30bar(abs)以下。

冷却剂平均温度在10~90℃之间。

一回路压力低于bar(abs),那么S、R棒组也需插入堆芯5步处,且要求冷却剂硼浓度大于2100ppm。

这是因为压力低时,冷却剂对操纵棒驱动机构的润滑不充分,有可能会发生卡棒;2100ppm的硼浓度要求是为了保证有足够的停堆余度。

冷却剂平均温度大于70℃时必需有一台主泵运行,这是为了幸免70℃以上启动第一台主泵可能会造成超压。

冷却剂温度操纵及硼浓度均匀化由RRA系统进行,蒸汽发生器可投用。

系统压力由RCV系统操纵,由RRA系统平安阀提供超压爱惜,一组稳压器平安阀作备用。

RCP系统充水、补水、净化由RCV、REA及RTR系统进行。

4、单相中间停堆

单相中间停堆是指一回路充水排气后稳压器充满水(单相)的运行方式。

此工况要求RCP系统冷却剂温度操纵在90~180℃之间,压力操纵在24~30bar(abs)之间,至少有一台主泵投运。

RCP系统由RCV和REA系统进行补水和净化。

其余要求条件与正常冷停堆工况相同。

五、两相中间停堆

两相中间停堆是指RCP系统的稳压器由单相向两相过渡,RCP系统冷却剂压力由RCV系统操纵向RCP系统压力调剂系统操纵过渡的过渡运行方式(或向反方向过渡)。

此工况反映堆处于次临界,停堆深度大于1000pcm,除停堆棒组(S棒组)和温度棒组(R棒组)外,其余操纵棒组插入堆芯5步处。

RCP系统压力在24~30bar(abs)之间,冷却剂温度在120~180℃之间。

120℃为在稳压器中成立汽腔的最低温度。

当稳压器汽腔形成时,RCV系统对冷却剂压力操纵已变得困难,因此当较为稳固的稳压器汽腔形成后,应尽快转入由稳压器操纵系统压力。

稳压器水位由水位调剂系统操纵。

至少有一台主泵投运,有二台蒸汽发生器能够投用。

RCV和REA系统正常运行,运行的RRA系统预备退出运行(或相反,停运的RRA系统已预备好,即将投入运行)。

在此工况下,若是三台主泵均不能投运时,反映堆停堆深度必需大于3200pcm。

RCP系统冷却剂温度180℃是RRA系统运行的最高温度极限。

六、正常中间停堆

当RRA系统与RCP系统完成隔离后,反映堆就由两相中间停堆进入到正常中间停堆运行方式。

此工况反映堆处于次临界,停堆深度大于1000pcm,操纵棒位置状态同上。

RCP系统压力由稳压器操纵在24~155bar(abs)之间,冷却剂温度在160~291.4℃之间。

稳压器水位维持在零负荷整定值上。

冷却剂温度至少由2台蒸汽发生器操纵,至少2台主泵投运。

RCV、REA系统和GCT系统及ARE或ASG在运行中。

应急平安设施已预备好。

7、热停堆

此工况反映堆处于次临界,要求停堆深度在1000~1770pcm之间(相对应于冷却剂硼浓度690~0ppm,大于690ppm时,停堆深度在1000pcm),除S棒组外,其余操纵棒组插入堆芯5步处。

RCP系统压力由稳压器操纵在155bar(abs)。

冷却剂温度在

~291.4℃,由蒸汽发生器GCT系统操纵(排向大气或冷凝器)。

稳压器水位维持在零负荷整定值上。

至少有二台主泵二台蒸汽发生器运行,其中一组为1号环路。

蒸汽发生器给水由ASG或ARE系统供给。

RCP系统化容操纵由RCV和REA系统进行。

在此工况下若是三台主泵均不能投运或仅一台主泵运行超过24小时,那么要求反映堆停堆深度大于3200pcm或使反映堆转入冷停堆运行方式。

八、热备用

此工况反映堆处于临界状态,堆功率≤2%额定功率(要紧受ASG供水限制)。

S棒组位于堆顶,R棒组件位于调剂带,G棒组处于整定棒位上。

三个环路的主泵和蒸汽发生器均投入运行。

其余运行条件要求同热停堆运行方式。

反映堆在打算降负荷后或在换料后的物理实验期间,均要通过热备用状态。

九、功率运行

此工况反映堆处于临界状态,堆功率在2%~100%额定功率之间,操纵棒位置同上(其中堆功率在2%~15%额定功率之间也可称为低功率运行工况)。

现在RCP系统冷段温度、热段温度、平均温度及蒸汽温度与负荷之间的关系如图2—33。

稳压器维持RCP系统压力155bar(abs),稳压器水位在%~%(相应饱和温度

~310℃)之间转变。

现在主给水系统(ARE)和主蒸汽系统(VVP)正常运行,蒸汽旁路系统(GCT)处于备用。

RCP系统三个环路同时运行。

九个标准运行工况的要紧参数和条件列于表2—6。

表2—6标准运行工况

一回路平均均温度

Tav

一回路

压力/

bar(abs)

主泵运行数

1

≥5000pcm

所有棒在堆内

10℃≤Tav≤60℃

RRA

PTR备用

/

2

≥5000pcm

所有棒在堆内

10℃≤Tav≤70℃

RRA

PTR备用

/

3

≥1000pcm

G棒在堆内

S、R棒在堆外

10℃≤Tav≤90℃

≤30

RRA

SG备用

RCV

13VP

Tav≥70℃

时至少

一台

4

单相中间停堆

≥1000pcm

G棒在堆内

S、R棒在堆外

90℃≤Tav≤180℃

24≤P≤30

RRA

SG备用

RCV

13VP

≥1

5

中间停堆

≥1000pcm

G棒在堆内

S、R棒在堆外

120℃≤Tav≤180℃

24≤P≤30

RRA

SG备用

稳压器或

RCV13VP

≥1

6

正常

中间停堆

≥1000pcm

G棒在堆内

S、R棒在堆外

160℃≤Tav≤291.4℃

24≤P≤155

GCT

ASG或

ARE

稳压器

≥2

7

≥图的

限制线

R、G棒在堆内

S、棒在堆外

291.4℃

155

GCT

ASG或

ARE

稳压器

≥2

8

0

S棒在堆外

R棒在调节带

G棒在整定棒位上

中间量程

~10-5

P≤2%Pn

291.4℃

155

GCT

ASG或

ARE

稳压器

3

9

0

同上

2%

291.4℃≤Tav≤310℃

155

GCT

/汽机

ARE

稳压器

3

四、RCP系统温度、压力限制

反映堆标准运行工况的温度、压力限制标注在图2—34上。

1.饱和曲线

图上饱和曲线的上方为液态,下方为汽态,RCP系统冷却剂在任何情形下都应工作在饱和曲线的上方并维持必然距离。

只有稳压器内冷却剂工作在饱和曲线上。

蒸汽发生器二回路侧冷却介质大多数情形下工作在饱和曲线上,静态时该冷却介质温度与RCP系统冷却剂温度相等,压力为此温度下的饱和压力。

2.RCP系统运行温度上限线

从核平安角度考虑,除稳压器外,RCP系统任何部位都不许诺显现冷却剂沸腾,尤其是在燃料元件表面。

另外也要幸免主泵运转时泵吸入口局部汽化,造成主泵叶片汽蚀。

故RCP系统运行时限制最高堆入口温度应比运行压力所对应的饱和温度低50℃。

实际限制冷却剂平均温度比相应饱和温度低50℃。

如此在带功率状态,堆入口冷却剂温度被限制得更低,是平安的。

3.RCP系统运行温度下限线

稳压器作为RCP系统压力操纵设备时,稳压器内冷却剂温度大于其他部位冷却剂温度。

稳压器与一回路管道之间连接波动管的热应力随上述二者间的温度差增大而加大。

为限制热应力给波动管造成损害,规定一回路冷却剂平均温度最低不得低于运行压力对应的饱和温度(即稳压器内冷却剂温度)110℃。

4.RCP系统额定运行压力线

RCP系统额定运行压力为155bar(abs),它受回路设计的机械强度的限制。

为避免系统超压对设备造成破坏,稳压器上设有三个平安阀组,其动作压力别离整定在16六、170、172bar(abs)。

5.蒸汽发生器管板双侧最大压差限制线

蒸汽发生器管板是一块开有许多孔的平板,由于受机械强度和应力的限制,管板双侧压差被限制在110bar。

管板一回路侧为RCP系统压力(PRCP),二回路侧为RCP系统冷却剂温度所对应的饱和蒸汽压力(Psat,蒸汽发生器无功率输出时),因此RCP系统压力应限制在系统温度对应的饱和压力再加上110bar的压力之内。

6.主泵运行最低压力限制线

主泵的最低启动运行压力规定大于24bar(abs),以抬起1号轴封动环,使1号轴封动、静环间隙进入可调剂状态,如此也能有效幸免主泵叶轮汽蚀。

同时要求RCV系统使1号轴封两头压差大于19bar,在主泵启动前使轴封两头面分离,使1号轴封泄漏量大于50L/h,达到润滑、冷却目的。

7.RRA系统运行参数限制线

RRA系统设计的最高运行温度为180℃,最高运行压力为30bar(abs)。

因此,在RCP系统升温、升压时,RRA系统必需在此限值之前隔离、退出运行。

同时,RRA系统还规定了最低投入温度为160℃,这是为了避免反映堆压力壳在整个寿期内发生脆性断裂。

因为RCP系统冷却剂温度在160℃以下若是仍未投入RRA系统,那么RCP系统压力发生意外升高时,压力爱惜只能依托稳压器平安阀组(最低动作压力整定值为

166bar(abs)),这在压力壳寿期末是很危险的。

而现在若是已投入RRA系统,那么该系统有二个不同定值的平安阀进行超压爱惜,它们的压力定值别离为40和45bar(abs),如此就排除压力壳发生脆性断裂的可能。

8.GCT系统大汽排放阀整定值限制线

蒸汽发生器二回路侧的运行状态直接阻碍着一回路。

二回路侧最大运行压力为

76bar(abs),这是由GCT系统的大气排放阀整定值来保证的,其对应的饱和温度即是291.4℃。

9.硼结晶温度限制线

硼酸在水中的溶解度随温度升高而增加,为避免低温时一回路水中的硼酸结晶析出,限制一回路冷却剂温度不得低于10℃。

10.主泵启动温度限制线

RCP系统冷却剂温度超过70℃时,要求至少要有一台主泵投入运行,以幸免启动第一台主泵时造成RCP系统超压。

这是因为来自RCV系统的冷的轴封注水,约有

1.12m3/h通过泵轴承进入并滞留在泵腔及其周围的管道内,当在冷却剂温度70℃以上启动主泵时,这部份冷水将会在堆芯、蒸汽发生器及管路内与高温水混合、加热膨胀,从而使RCP系统超压(现在稳压器为单相),致使RRA系统平安阀开启。

冷水进入堆芯,同时还存在反映堆引入正反映性的危险。

第二章一回路辅助系统

化学和容积操纵系统(RCV)

一、化学和容积操纵系统的功能

化学和容积操纵系统(RCV)是反映堆冷却剂系统(RCP)的要紧辅助系统,它是一个封锁的加压的系统。

RCV系统的要紧功能是:

1.容积操纵,用以维持反映堆RCP系统内的水容积,吸收稳压器吸收不了的水容积转变,使稳压器水位维持在随冷却剂温度而转变的水位整定值上。

利用RCV系统来调剂、补偿RCP系统冷却剂因温度转变、向系统外泄漏或上充(包括轴封注水)和下泄流量不平稳致使的水容积转变;

2.反映性操纵,与反映堆硼和水补给系统(REA)相配合,通过调剂冷却剂硼浓度来操纵反映堆内反映性的转变,和保证足够的停堆深度;

3.化学操纵,通过净化处置,去除冷却剂中裂变产物和侵蚀产物,从而操纵一回路的放射性水平,提高冷却剂水质。

与反映堆硼和水补给系统(REA)配合,通过给冷却剂加药,用以给冷却剂除氧、调整PH值。

RCV系统的辅助功能是:

1.为冷却剂泵提供通过过滤、冷却的轴封水和水泵轴承冷却、润滑水;

2.为稳压器提供辅助喷淋冷水;

3.为反映堆及RCP系统进行充水排气及打压检漏实验;

4.在稳压器充满水单相运行时,操纵RCP系统的压力;

5.接收RCP系统运行中冷却剂水的多余下泄;

6.在余热排放系统(RRA)预备投入前,通过向RCV系统下泄,以加热RRA系统介质。

RCV系统的平安功能是:

1.在RCP系统发生小破口事故时,RCV系统能维持RCP系统的水装量;

2.在正常停堆或发生卡棒、弹棒等反映性事故时,与REA系统配合,一起确保反映堆处于次临界状态;

3.在平安注入系统(RIS)投入向堆芯注水时,RCV系统向RCP系统紧急注入硼酸溶液。

现在RCV系统上充泵作为高压平安注入泵投入运行。

二、化学和容积操纵系统的设计依据

一、容积操纵

反映堆按规定的速度升、降温或改变功率时,RCV系统应能维持RCP系统有适合的水装量;应能承担RCP系统从冷态到热态的启动进程,或从热态到冷态的停闭进程中以最大速度升、降温而产生的最大的冷却剂体积转变速度;应有足够的能力补偿RCP系统小破口泄漏,并仍有能力足以维持RCP系统适合的水容积。

二、反映性操纵

RCV系统应依照压水堆运行要求,改变冷却剂中硼的浓度,配合操纵棒组件操纵反映性较慢的转变。

RCV系统操纵的反映性应包括,在第一次装料时与可燃毒物一路操纵堆芯的全数后备反映性;补偿由于慢化剂和燃料温度转变而引发的堆芯反映性的转变;补偿运行中裂变产物氙和钐积存及负荷转变或停堆引发氙浓度转变而致使的反映性转变;维持反映堆停堆检修、换料操作中应具有的足够的停堆深度。

RCV系统还应做到在反映堆寿期的任何时候,不依托操纵棒组件能独立地停堆,并继续向冷却剂中注入足够的硼酸,以补偿氙的衰变、冷却剂降温引发的反映性增加,以维持足够的停堆深度。

另外,还需考虑堆芯冷却剂因温度升高,水体积膨胀会引发部份含硼冷却剂被挤出,堆芯硼含量相应下降而造成反映性增加。

这种正反映性转变必需小于慢化剂及燃料温度升高造成的负反映性转变。

为此,冷却剂硼浓度一样应操纵在1100~1200ppm之下,以维持反映堆综合的反映性温度效应仍为负。

3、水质操纵

冷却剂的水质操纵包括化学水质操纵和放射性水平操纵。

RCV系统除需保证冷却剂正常运行中的水质指标外,还要知足在规定的许诺燃料包壳破损率下仍能维持冷却剂达到规定的放射性水平和水质指标。

冷却剂的放射性来自水及其杂质、侵蚀产物、化学添加剂吸收中子被活化,和从燃料包壳内释放出的裂变产物。

其中绝大部份来自裂变产物,小部份来自被活化的侵蚀产物。

裂变产物中惰性气体氪(Kr)、氙(Xe)占总放射性的90%以上,碘(I)占~3%,铷(Rb)、钼(Mo)各占~1%,铯(Cs)占

~%。

一个100万KW级压水堆在1%燃料包壳破损后,其在冷却剂中总的放射性比活度约为Ci/L。

在这种情形下,RCV系统应能使冷却剂达到压水堆电站对冷却剂总放射性规定10-5~10-6Ci/L量级的指标。

化学和容积操纵系统应能使冷却剂维持在规定的化学水质指标范围内,以操纵对材料的侵蚀速度,减少侵蚀产物积存,保障设备利用寿命。

RCV系统所设置的过滤、净扮装置用以去除冷却剂中的有害杂质,添加联氨以去除水中溶解氧,添加氢以抑制堆芯冷却剂水的辐照分解,添加LiOH以操纵调剂PH值。

RCV系统净化用离子互换树脂有效地将冷却剂电导率降低一个量级以上,可是离子互换树脂的工作温度必需在60℃以下,需要严格操纵以幸免树脂在高温下破坏失效。

净化系统又处在常压下运行,因此还需在RCV系统下泄水从~292℃降温至~45℃后将下泄流压力从155bar(abs)降压至(2~5)bar(abs)。

相反,在上充至RCP系统前,事前升压升温。

三、化学和容积操纵系统大体操纵原理

一、容积操纵原理

RCV系统容积操纵是为了维持RCP系统的水容积,吸收掉稳压器吸收不了的水容积的转变,使稳压器水位维持在其随冷却剂平均温度而设定的整定值上。

RCV系统容积操纵需要一个持续流量的调剂,这是因为冷却剂泵需要衡定的轴承冷却、润滑水和衡定的轴封注水;RCP系统负荷转变及冷却剂温度转变需要补偿;RCP系统泄漏需要补偿;化学操纵需要持续净化;反映性操纵需要进行冷却剂硼浓度调整,这些都是随时需要进行操纵调剂的。

容积操纵原理如图3—1。

化学和容积操纵系统(RCV)从RCP系统冷段引出下泄流经容积操纵箱,再由上充泵把上充流打回RCP系统。

反映堆稳固运行时,上充流量与下泄流量相等,当RCP系统内冷却剂体积发生转变时,稳压器水位发生转变,水位偏离整定值,调剂上充流量,使稳压器水位恢复在整定水位上。

可是,容积操纵箱容积仅为8.9m3,箱内正常水位水容积为3.4m3,因此容量是有限的。

在RCP系统升温、降温、或其他瞬态水体积有专门大转变时,可由其他系统相配合,当容积操纵箱水位高时,可把水排放到硼回收系统(TEP),当容积操纵箱水位低时,由硼和水补给系统(REA)按需要进行补给。

二、化学操纵原理

为了把RCP系统所有部件的侵蚀限制在最低程度;幸免杂质沉积在系统内,专门是在燃料元件表面而致使包壳传热恶化过热损坏;幸免RCP系统冷却剂中被活化的侵蚀产物和裂变

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2023 冰点文库 网站版权所有

经营许可证编号:鄂ICP备19020893号-2